Photonics Research, 2020, 8 (7): 07001226, Published Online: Jun. 30, 2020  

Plasmonic resonance-linewidth shrinkage to boost biosensing Download: 705次

Author Affiliations
1 Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
2 Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China
3 College of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
4 The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
5 e-mail: nanoantenna@hotmail.com
6 e-mail: zlyang@xmu.edu.cn
Copy Citation Text

Min Gao, Weimin Yang, Zhengying Wang, Shaowei Lin, Jinfeng Zhu, Zhilin Yang. Plasmonic resonance-linewidth shrinkage to boost biosensing[J]. Photonics Research, 2020, 8(7): 07001226.

References

[1] M. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys., 1985, 57: 783-826.

[2] MaierS. A., “Plasmonics: Fundamentals and Applications,” (Springer, 2007).

[3] S. I. Azzam, V. M. Shalaev, A. Boltasseva, A. V. Kildishev. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 2018, 121: 253901.

[4] X. Tian, Z.-Y. Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photon. Res., 2016, 4: 146-152.

[5] L. Meng, M. Sun. Tip-enhanced photoluminescence spectroscopy of monolayer MoS2. Photon. Res., 2017, 5: 745-749.

[6] J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, J. Guo. Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photon., 2018, 5: 776-781.

[7] L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science, 2018, 362: 69-72.

[8] J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, J. F. Li. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy, 2019, 4: 60-67.

[9] J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, Q. H. Liu. Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics. Nanophotonics, 2019, 8: 307-316.

[10] J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, S. Guo. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens. Bioelectron., 2020, 150: 111905.

[11] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA, 2003, 100: 13549-13554.

[12] H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 2010, 9: 205-213.

[13] M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas. Photodetection with active optical antennas. Science, 2011, 332: 702-704.

[14] K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, G. Strangi. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater., 2016, 15: 621-627.

[15] Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, J. F. Wang. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun., 2013, 4: 2381.

[16] C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 2014, 8: 95-103.

[17] D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, S. A. Maier. Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays. ACS Nano, 2010, 4: 432-438.

[18] B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, B. Ren. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm. Adv. Mater., 2018, 30: 1706031.

[19] J. Guo, Z. Li, H. Guo. Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing. Opt. Express, 2016, 24: 17259-17271.

[20] A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, D. S. Sutherland. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett., 2008, 8: 3893-3898.

[21] N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett., 2010, 10: 4952-4955.

[22] F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, H. Altug. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics, 2019, 13: 390-396.

[23] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater., 2008, 7: 442-453.

[24] D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, F. De Angelis. Nanoporous gold metamaterials for high sensitivity plasmonic sensing. Nanoscale Horiz., 2019, 4: 1153-1157.

[25] V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, A. N. Grigorenko. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater., 2013, 12: 304-309.

[26] S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, J.-B. Han. Polarization state-based refractive index sensing with plasmonic nanostructures. Nanoscale, 2015, 7: 20171-20179.

[27] R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, M. Käll. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. Nanoscale, 2016, 8: 10576-10581.

[28] H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, P. Fischer. Dispersion and shape engineered plasmonic nanosensors. Nat. Commun., 2016, 7: 11331.

[29] N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, P. Vavassori. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun., 2015, 6: 6150.

[30] B. Caballero, A. García-Martín, J. C. Cuevas. Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photon., 2016, 3: 203-208.

[31] A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, B. N. Chichkov. Optical response features of Si-nanoparticle arrays. Phys. Rev. B, 2010, 82: 045404.

[32] J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, Q. H. Gong. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat. Commun., 2018, 9: 4858.

[33] R. Ameling, H. Giessen. Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett., 2010, 10: 4394-4398.

[34] S. Malynych, G. Chumanov. Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J. Am. Chem. Soc., 2003, 125: 2896-2898.

[35] Y. Hua, A. K. Fumani, T. W. Odom. Tunable lattice plasmon resonances in 1D nanogratings. ACS Photon., 2019, 6: 322-326.

[36] D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, T. W. Odom. Structural engineering in plasmon nanolasers. Chem. Rev., 2018, 118: 2865-2881.

[37] W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B, 1996, 54: 6227-6244.

[38] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 2003, 424: 824-830.

[39] Z. L. Cao, H. C. Ong. Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array. Opt. Express, 2016, 24: 12489-12500.

[40] Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan, H. C. Ong. Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion. Phys. Rev. B, 2017, 95: 155415.

[41] Z. L. Cao, H. C. Ong. Study of the momentum-resolved plasmonic field energy of Bloch-like surface plasmon polaritons from periodic nanohole array. Opt. Express, 2017, 25: 30626-30635.

[42] M. Lin, Z. L. Cao, H. C. Ong. Determination of the excitation rate of quantum dots mediated by momentum-resolved Bloch-like surface plasmon polaritons. Opt. Express, 2017, 25: 6092-6103.

[43] M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, Z. Yang. Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays. Nanoscale, 2019, 11: 16428-16436.

[44] C. Genet, T. W. Ebbesen. Light in tiny holes. Nature, 2007, 445: 39-46.

[45] H. W. Gao, W. Zhou, T. W. Odom. Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library. Adv. Funct. Mater., 2010, 20: 529-539.

[46] D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, C. Lienau. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett., 2003, 91: 143901.

[47] J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, Q. H. Liu. Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials. Nanophotonics, 2020, 9: 167-176.

[48] J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, Z. Yang. An ultranarrow SPR linewidth in the UV region for plasmonic sensing. Nanoscale, 2019, 11: 4061-4066.

[49] M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, Z. Wang. Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes. Nanophotonics, 2020, 9: 815-822.

[50] A. B. Dahlin. Sensing applications based on plasmonic nanopores: the hole story. Analyst, 2015, 140: 4748-4759.

[51] D. Garoli, H. Yamazaki, N. Maccaferri, M. Wanunu. Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications. Nano Lett., 2019, 19: 7553-7562.

[52] P. B. Johnson. Optical constants of the noble metals. Phys. Rev. B, 1972, 6: 4370-4379.

[53] C. Zhao, J. Chen, H. Li, T. Li, S. Zhu. Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes. Chin. Opt. Lett., 2018, 16: 070901.

[54] F. Gan, C. Sun, H. Li, Q. Gong, J. Chen. On-chip polarization splitter based on a multimode plasmonic waveguide. Photon. Res., 2018, 6: 47-53.

Min Gao, Weimin Yang, Zhengying Wang, Shaowei Lin, Jinfeng Zhu, Zhilin Yang. Plasmonic resonance-linewidth shrinkage to boost biosensing[J]. Photonics Research, 2020, 8(7): 07001226.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!