红外, 2020, 41 (11): 33, 网络出版: 2021-02-05  

基于红边光谱特征和XGBoost算法的冬小麦叶绿素浓度估算研究

Research on the Estimation of Winter Wheat Chlorophyll Content Based on Red Edge Spectral and XGBoost Algorithm
作者单位
1 河南农业大学资源与环境学院,河南 郑州 450002
2 河南省土地整治与生态重建工程技术研究中心,河南 郑州 450002
摘要
研究了基于氮肥效应的冬小麦不同生育期的叶绿素浓度,探讨了XGBoost算法在冬小麦叶绿素浓度估算中的适用性。利用该算法构建了冬小麦叶绿素浓度的高光谱估算模型,并将其与偏最小二乘法(Partial Least Squares, PLS)以及人工神经网络(Neural Network, NN)算法进行了对比。结果表明:(1)冬小麦的叶绿素浓度随着氮肥用量的增加而逐渐升高。(2)基于一阶微分光谱(First-order Differential Reflectance, FDR)数据集的估算模型表现最好。通过对比建模数据集与验证数据集的决定系数R2和相对分析误差(Residual Predictive Derivation, RPD)发现,XGBoost算法的效果最佳。(3)通过波段重要性分析发现,XGBoost算法的8个重要波段均在738~753 nm范围内。与8个常用的红边指数相比,通过XGBoost算法筛选到的8个一阶微分光谱波段对叶绿素浓度的准确估算起到了更加重要的作用。该算法可以作为一种有效的高光谱信息挖掘手段来估算冬小麦的叶绿素浓度。
Abstract
The chlorophyll concentrations in different growth stages of winter wheat based on the effect of nitrogen fertilizer are studied, and the applicability of XGBoost algorithm in estimating the chlorophyll concentration of winter wheat is discussed. A hyperspectral estimation model for chlorophyll concentration in winter wheat is constructed using this algorithm which is compared with partial least squares and artificial neural network algorithms. The results show that:(1)The chlorophyll concentration of winter wheat increases gradually with the increase of nitrogen fertilizer.(2)The estimation model based on the first-order differential spectrum data set has the best performance. The XGBoost algorithm is found to work best by comparing R2 and RPD of the modeling and verification data sets.(3)Through the band importance analysis, it is found that the 8 important bands of XGBoost algorithm are all within the range of 738~753 nm.Compared with the 8 commonly used red-edge parameters, the 8 first-order differential spectral bands screened by the XGBoost algorithm play a more important role in accurately estimating chlorophyll concentration. This algorithm can be used as an effective hyperspectral information mining method to estimate the chlorophyll concentration of winter wheat.
参考文献

[1] Huang W, Lamb D W, Niu Z, et al. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging [J]. Precision Agriculture, 2007, 8(4-5): 187-197.

[2] Feng W, Yao X, Zhu Y, et al. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat [J]. European Journal of Agronomy, 2008, 28(3): 394-404.

[3] Montesinos-López O A, Montesinos-López A, Crossa J, et al. Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data [J]. Plant methods, 2017, 13(1): 4.

[4] Berger K, Atzberger C, Danner M, et al. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study [J]. Remote Sensing, 2018, 10(1): 85-111.

[5] Huang J, Ma H, Sedano F, et al. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST-PROSAIL model [J]. European Journal of Agronomy, 2019, 102: 1-13.

[6] Berger K, Atzberger C, Danner M, et al. Model-based optimization of spectral sampling for the retrieval of crop variables with the PROSAIL model [J]. Remote Sensing, 2018, 10(12): 2063-2077.

[7] Jay S, Maupas F, Bendoula R, et al. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping [J]. Field Crops Research, 2017, 210: 33-46.

[8] Li H, Liu G, Liu Q, et al. Retrieval of winter wheat leaf area index from Chinese GF-1 satellite data using the PROSAIL model [J]. Sensors, 2018, 18(4): 1120-1138.

[9] Caporaso N, Whitworth M B, Fisk I D. Protein content prediction in single wheat kernels using hyperspectral imaging [J]. Food chemistry, 2018, 240: 32-42.

[10] 尼加提, 卡斯木, 师庆东, 等. 基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算 [J]. 农业工程学报, 2017, 33(22): 208-216.

[11] 付元元, 王纪华, 杨贵军, 等. 应用波段深度分析和偏最小二乘回归的冬小麦生物量高光谱估算 [J]. 光谱学与光谱分析, 2013, 33(5): 1315-1319.

[12] Nunez J, Otazu X, Fors O, et al. Multiresolution-based image fusion with additive wavelet decomposition [J]. IEEE Transactions on Geoscience and Remote sensing, 1999, 37(3): 1204-1211.

[13] 王丽爱, 马昌, 周旭东, 等. 基于随机森林回归算法的小麦叶片SPAD值遥感估算 [J]. 农业机械学报, 2015, 46(1): 259-265.

[14] Ashourloo D, Aghighi H, Matkan A A, et al. An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4344-4351.

[15] Jia Y, Jin S, Savi P, et al. GNSS-R soil moisture retrieval based on a XGboost machine learning aided method: Performance and validation [J]. Remote Sensing, 2019, 11(14): 1655-1680.

[16] Jin Q, Fan X, Liu J, et al. Estimating tropical cyclone intensity in the South China Sea using the XGBoost model and FengYun satellite images [J]. Atmosphere, 2020, 11(4): 423-445.

[17] Geladi P, Kowalski B R. Partial least-squares regression: A tutorial [J]. Analytica chimica acta, 1986, 185: 1-17.

[18] McGoverin C M, Engelbrecht P, Geladi P, et al. Characterisation of non-viable whole barley, wheat and sorghum grains using near-infrared hyperspectral data and chemometrics [J]. Analytical and Bioanalytical Chemistry, 2011, 401(7): 2283-2289.

[19] Shahin M A, Symons S J. Detection of fusarium damage in Canadian wheat using visible/near-infrared hyperspectral imaging [J]. Journal of Food Measurement & Characterization, 2012, 6(1-4): 3-11.

[20] Li L, Wang S, Ren T, et al. Evaluating models of leaf phosphorus content of winter oilseed rape based on hyperspectral data [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14): 209-218.

[21] Abdel-Rahman E M, Mutanga O, Odindi J, et al. A comparison of partial least squares(PLS)and sparse PLS regressions for predicting yield of Swiss chard grown under different irrigation water sources using hyperspectral data [J]. Computers and Electronics in Agriculture, 2014, 106: 11-19.

[22] Liu H, Zhu H, Wang P. Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data [J]. International Journal of Remote Sensing, 2017, 38(8-10): 2117-2134.

[23] Li Z, Nie C, Wei C, et al. Comparison of four chemometric techniques for estimating leaf nitrogen concentrations in winter wheat(Triticum Aestivum) based on hyperspectral features [J]. Journal of Applied Spectroscopy, 2016, 83(2): 240-247.

[24] 沈文颖, 李映雪, 冯伟, 等. 基于因子分析-BP神经网络的小麦叶片白粉病反演模型 [J]. 农业工程学报, 2015, 31(22): 183-190.

[25] 杨贵军, 赵春江, 邢著荣, 等. 基于PROBA/CHRIS遥感数据和 PROSAIL 模型的春小麦LAI反演 [J]. 农业工程学报, 2011, 27(10): 88-94.

[26] He T, Xie C, Liu Q, et al. Evaluation and comparison of random forest and A-LSTM networks for large-scale winter wheat identification [J]. Remote Sensing, 2019, 11(14): 1665-1686.

[27] Zamani J, Cao C, Ni X, et al. PM2.5 Prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data [J]. Atmosphere, 2019, 10(7): 373-392.

[28] Su H, Yang X, Lu W, et al. Estimating subsurface thermohaline structure of the global ocean using surface remote sensing observations [J]. Remote Sensing, 2019, 11(13): 1598-1620.

[29] Li R, Cui L, Fu H, et al. Estimating high-resolution PM1 concentration from Himawari-8 combining extreme gradient boosting-geographically and temporally weighted regression (XGBoost-GTWR) [J]. Atmospheric Environment, 2020, 229: 117434.

[30] 兰玉彬, 朱梓豪, 邓小玲, 等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报, 2019, 35(3): 92-100.

[31] Feng W, Guo B B, Wang Z J, et al. Measuring leaf nitrogen concentration in winter wheat using double-peak spectral reflection remote sensing data [J]. Field Crops Research, 2014, 159: 43-52.

[32] Dash J, Curran P. The MERIS terrestrial chlorophyll index [J]. International Journal of Remote Sensing, 2004, 25(23): 5403-5413.

[33] Wu C, Niu Z, Tang Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation [J]. Agricultural and forest meteorology, 2008, 148(8-9): 1230-1241.

[34] Chang H J, Yong C T, Xia Y, et al. Estimating leaf chlorophyll content using red edge parameters [J]. Pedosphere, 2010, 20(5): 633-644.

[35] Ecarnot M, Compan F, Roumet P. Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer [J]. Field Crops Research, 2013, 140: 44-50.

[36] Boochs F, Kupfer G, Dockter K, et al. Shape of the red edge as vitality indicator for plants [J]. Remote sensing, 1990, 11(10): 1741-1753.

[37] Vogelmann J, Rock B, Moss D. Red edge spectral measurements from sugar maple leaves [J]. Title Remote Sensing, 1993, 14(8): 1563-1575.

[38] Clevers J G, Gitelson A A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3 [J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23: 344-351.

郭宇龙, 李岚涛, 陈伟强, 崔佳琪, 王宜伦. 基于红边光谱特征和XGBoost算法的冬小麦叶绿素浓度估算研究[J]. 红外, 2020, 41(11): 33. GUO Yu-long, LI Lan-tao, CHEN Wei-qiang, CUI Jia-qi, WANG Yi-lun. Research on the Estimation of Winter Wheat Chlorophyll Content Based on Red Edge Spectral and XGBoost Algorithm[J]. INFRARED, 2020, 41(11): 33.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!