光学 精密工程, 2018, 26 (2): 380, 网络出版: 2018-03-21   

基于压电悬臂梁的驱动器与传感器性能分析的精确解析模型

An accurate analytical expression for predicting the performance of piezoelectric cantilever based actuators and sensors
作者单位
1 大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116024
2 悉尼大学 航空与机械电子工程系,澳大利亚 悉尼 2006
摘要
三层压电梁结构在电场作用下发生变形后会产生诱发电势,进而改变材料整体电势分布,本文考虑此变形和电势耦合效应,基于欧拉-伯努利梁变形理论,推导出能够准确预测压电智能悬臂梁传感器与驱动器性能的解析表达式。考虑压电梁结构弯曲变形后产生的电场影响,建立了三层压电梁结构的控制方程;建立了压电梁作为驱动器时端部输出位移、驱动力矩与输入电压之间联系的解析表达式,以及作为传感器时输出电压与端部作用力之间联系的解析表达式。通过与ANSYS有限元模拟结果以及传统的驱动器和传感器性能表达式的对比,验证了所推导的解析表达式的准确性。
Abstract
The deformation of the three-layered piezoelectric beam in the electric field will arise the induced potential, and then change the distribution of the whole structural electric potential. Considering the coupling effect of the deformation and potential, the accurate analytical expressions, based on the Euler-Bernoulli beam theory, for predicting the performance of three-layered piezoelectric cantilever actuators and sensors, were derived. In the derivation process, the governing equation of three-layered piezoelectric beam structure was established with considering the effect of the electric field induced by the structural bending deformation, and then two analytical expressions for piezoelectric actuators and sensors were obtained with two different boundary conditions. These two analytical expressions related tip output displacement with driving moment and input voltage for piezoelectric actuators, and input voltage with tip force for piezoelectric sensors, respectively. The accuracy of the present expressions was illustrated by comparison of results obtained from ANSYS finite element simulation and conventional expressions for test problems.
参考文献

[1] CRAWLEY E F, DE LUIS J. Use of piezoelectric actuators as elements of intelligent structures[J]. AIAA Journal, 1987, 25(10): 1373-1385.

[2] ABRAMOVICH H, PLETNER B. Actuation and sensing of piezolaminated sandwich type structures[J]. Composite Structures, 1997, 38(1-4): 17-27.

[3] 阚君武, 唐可洪, 王淑云, 等. 压电悬臂梁发电装置的建模与仿真分析[J]. 光学 精密工程, 2008, 16(1): 71-75.

    KAN J W, TANG K H, WANG SH Y, et al.. Modeling and simulation of piezoelectric cantilever generators[J]. Opt. Precision Eng., 2008, 16(1): 71-75. (in Chinese)

[4] ZHANG X D, SUN C T. Formulation of an adaptive sandwich beam[J]. Smart Materials and Structures, 1996, 5(6): 814-823.

[5] 董兴建, 孟光. 压电悬臂梁的动力学建模与主动控制[J]. 振动与冲击, 2005, 24(6): 54-56, 64.

    DONG X J, MENG G. Dynamic modeling and active vibration control of cantilever beam with piezoelectrics[J]. Journal of Vibration and Shock, 2005,24(6): 54-56, 64. (in Chinese)

[6] GAUDENZI P. Exact higher order solutions for a simple adaptive structure[J]. International Journal of Solids and Structures, 1998, 35(26-27): 3595-3610.

[7] DUTOIT N E, WARDLE B L, KIM S G. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters[J]. Integrated Ferroelectrics, 2005, 71(1): 121-160.

[8] ERTURK A, INMAN D J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations[J]. Smart Materials and Structures, 2009, 18(2): 025009.

[9] ROUNDY S, WRIGHT P K. A piezoelectric vibration based generator for wireless electronics[J]. Smart Materials and Structures, 2004, 13(5): 1131-1142.

[10] 贺学锋, 杜志刚, 赵兴强, 等. 悬臂梁式压电振动能采集器的建模及实验验证[J]. 光学 精密工程, 2011, 19(8): 1771-1778.

    HE X F, DU ZH G, ZHAO X Q, et al.. Modeling and experimental verification for cantilevered piezoelectric vibration energy harvester[J]. Opt. Precision Eng., 2011, 19(8): 1771-1778. (in Chinese)

[11] KAPURIA S. An efficient coupled theory for multilayered beams with embedded piezoelectric sensory and active layers[J]. International Journal of Solids and Structures, 2001, 38(50-51): 9179-9199.

[12] SZE K Y, YANG X M, FAN H. Electric assumptions for piezoelectric laminate analysis[J]. International Journal of Solids and Structures, 2004, 41(9-10): 2363-2382.

[13] VASQUES C M A, RODRIGUES J D. Coupled three-layered analysis of smart piezoelectric beams with different electric boundary conditions[J]. International Journal for Numerical Methods in Engineering, 2005, 62(11): 1488-1518.

[14] SARAVANOS D A, HEYLIGER P R, HOPKINS D A. Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates[J]. International Journal of Solids and Structures, 1997, 34(3): 359-378.

[15] CHEE C Y K, TONG L Y, STEVEN G P. A mixed model for composite beams with piezoelectric actuators and sensors[J]. Smart Materials and Structures, 1999, 8(3): 417-432.

[16] ROGACHEVA N N. The Theory of Piezoelectric Shells and Plates[M]. Boca Raton: CRC Press, 1994.

[17] KROMMER M, IRSCHIK H. A Reissner-Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect[J]. Acta Mechanica, 2000, 141(1-2): 51-69.

[18] BENJEDDOU A, TRINDADE M A, OHAYON R. A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(12): 1012-1025.

刘骥, 刘书田, 高仁璟, 仝立勇. 基于压电悬臂梁的驱动器与传感器性能分析的精确解析模型[J]. 光学 精密工程, 2018, 26(2): 380. LIU Ji, LIU Shu-tian, GAO Ren-jing, TONG Li-yong. An accurate analytical expression for predicting the performance of piezoelectric cantilever based actuators and sensors[J]. Optics and Precision Engineering, 2018, 26(2): 380.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!