光子学报, 2020, 49 (5): 0512001, 网络出版: 2020-06-04   

超越SNOM探针通光孔径尺寸的金属纳米间隙超分辨测量

Superresolving Measurement of the Metallic Nanogap beyond the Aperture Size of the SNOM Probe
作者单位
1 南开大学 电子信息与光学工程学院 现代光学研究所, 天津市微尺度光学信息技术科学重点实验室, 天津 300350
2 天津大学 精密仪器与光电子工程学院, 精密测试技术及仪器国家重点实验室, 天津 300072
摘要
采用电磁场有限元方法, 数值模拟了孔径型扫描近场光学显微镜(aperture Scanning Near-field Optical Microscopy, a-SNOM)在照明模式下的工作过程.针对金偶极天线结构, 改变天线 长度和纳米间隙尺寸, 计算了a-SNOM探针孔径的远场辐射速率随探针端面中心坐标变化的扫描曲线, 实现了超越a-SNOM探针通光孔径尺寸的天线金属纳米间隙的超分辨测量, 对于100 nm通光孔径的 探针, 可分辨最小尺寸为10nm(0.016倍波长)的金属间隙.通过对比金属和介质偶极天线的a-SNOM探针远场辐射速率测量的计算结果, 表明天线金属纳米间隙的超分辨测量的实现是由于金属间隙表面 等离激元的激发.
Abstract
The working process of aperture Scanning Near-Field Optical Microscopy (a-SNOM) under the illumination mode is simulated by using the finite element method of electromagnetic field. With changing the length and nanogap size of the optical resonant dipole antenna, the scanning curves of the radiative emission rate as a function of the central coordinate of the a-SNOM probe end surface are calculated. A superresolving measurement of the metallic nano-gap of the antenna beyond the aperture size of the a-SNOM probe is realized. For the a-SNOM probe with an aperture size of 100 nm, the smallest size of the antenna nanogap that can be resolved is 10 nm (0.016 times of the wavelength). By comparing the calculated results of the measured radiative emission rate of the a-SNOM probe for the metal and the dielectric dipole antennas, it is shown that the realization of the superresolving measurement of the metallic nanogap is due to the excitation of the gap surface plasmon polariton.
参考文献

[1] RASMUSSEN A, DECKERT V. New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy[J]. Analytical and Bioanalytical Chemistry, 2005, 381(1): 165-172.

[2] BAZYLEWSKI P, EZUGWU S, FANCHINI G, et al. A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management[J]. Applied Science-Basel, 2017, 7(10): 973.

[3] VEERMAN J A, OTTER A M, KUIPERS L, et al. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling[J]. Applied Physics Letters, 1998, 72(24): 3115-3117.

[4] WEINE J. The physics of light transmission through subwavelength apertures and aperture arrays[J]. Reports on Progress in Physics, 2009, 72(6): 064401.

[5] DUNN R C. Near-field scanning optical microscopy[J]. Chemical Reviews, 1999, 71(1): 2891-2928.

[6] HU Rui-xuan.Scanning near-field optical microscopy: instrumentation and application[D]. Nanjing: Nanjing University, 2018. 胡睿璇. 扫描近场光学显微镜的搭建与应用[D]. 南京: 南京大学, 2018.

[7] HERMANN R J, GORDON M J. Nanoscale optical microscopy and spectroscopy using near-field probes[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9 (1): 365-387.

[8] PAESLER M A, MOYER P J. Near-field optics: theory, instrumentation, and applications[J]. Physics Today, 1997, 50(11): 67.

[9] WANG Xue-en, FAN Zhao-zhong, TANG Tian-tong. Simulation of topographic images and artifacts in illumination-mode scanning-near-field optical microscopy[J]. Journal of the Optical Society of America A, 2005, 22(12): 2730-2736.

[10] CARMINATI R, NIETO-VESPERINAS M, GREFFET J J. Reciprocity of evanescent electromagnetic waves[J]. Journal of the Optical Society of America A. 1998, 15(3): 706- 712.

[11] GREFFET J J, CARMINATI R. Image formation in near-field optics[J]. Progress in Surface Science, 1997, 56(3): 133-237.

[12] MENDEZ E R, GREFFET J J, CARMINATI R. On the equivalence between the illumination and collection modes of the scanning near-field optical microscope[J]. Optics Communications, 1997, 142(1-3): 7-13.

[13] ALVAREZ L, SAUCEDA A, XIAO Mu-fei. Optical transmission of a subwavelength aperture: size and fiber parameter dependence of near-field resolution[J]. Optics Communications, 2003, 219(1-6): 9-14.

[14] XIAO Xin-yuan, ZOU Wen-dong, HUANG Chang-hui.Resolution analysis of scanning near-field optical microscopy based on method of images[J]. Journal of Sichuan Ordnance, 2010, 31(5): 146-148. 肖新元, 邹文栋, 黄长辉. 基于镜像法的扫描近场光学显微镜的分辨率分析[J]. 四川兵工学报, 2010, 31(5): 146-148.

[15] WU Cai-zhang, YE Mei,YE Hu-nian. Optical coupled-dipole model for scanning near-field optical microscopy[J]. Acta Photonica Sinica, 2005, 34(10): 1546-1549. 吴才章, 叶梅, 叶虎年. 扫描近场光学显微镜的光耦合偶极子模型[J]. 光子学报, 2005, 34(10): 1546-1549.

[16] LIN Y H, HANDEL B, HUANG H J, et al. Near-field optical imaging of a porous Au film: influences of topographic artifacts and surface plasmons[J]. Plasmonics, 2013, 8(2): 377-383.

[17] SIMPSON S H, HANNA S. Scanning near-field optical microscopy of metallic features[J]. Optics Communications, 2005, 256(4-6): 476-488.

[18] NOVOTNY L, HULST V N. Antennas for light[J]. Nature Photonics, 2011, 5(2): 83-90.

[19] HUANG Cai-jin, CHEN Cheng, WANG Shun-wen. An introduction to performance ofoptical antennas[J]. Laser & Optoelectronics Progress, 2012, 49(6): 060005. 黄彩进, 陈成, 王顺文. 纳米光学天线性能研究进展[J]. 激光与光电子学进展, 2012, 49(6) : 060005.

[20] LIAW J W, HUANG C H, CHEN B R, et al. Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod[J]. Nanoscale Research Letters, 2012, 7(1): 1-7.

[21] LU Guo-wei, ZHANG Tian-yue, LI Wen-qiang, et al. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. Journal of Physical Chemistry C, 2011, 115(32): 15822-15828.

[22] MUSKENS O L, GIANNINI V, SANCHEZ-GIL J A, et al. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas[J]. Nano Letters, 2007, 7(9): 2871-2875.

[23] JIA Hong-wei, YANG Fan, LIU Hai-tao, et al. Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas [J]. Photonics Research, 2016, 4(6): 293-305.

[24] MUHLSCHLEGEL P, EISLER H J, MARTIN O J F, et al. Resonant optical antennas[J]. Science, 2005, 308(5728): 1607-1609.

[25] JIA Hong-wei, LIU Hai-tao, ZHONG Ying. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 2015, 5: 8456.

[26] NOVOTNY L, HECHT B. Principles of nano-optics[M]. Cambridge University Press, 2007.

[27] PALIK E D. Handbook of optical constants of solids Part II [M]. Academic Press, 1985.

[28] WANG Hua-yu, LIU Hai-tao,ZHONG Ying, et al. Tunable fluorescence emission of molecules with controllable positions within the metallic nanogap between gold nanorods and a gold film[J]. Journal of Materials Chemistry C, 2019, 7(43): 13526-13535.

[29] LIU Chuan, LIU Hai-tao, ZHONG Ying. Impact of surface plasmon polaritons and other waves on the radiation of a dipole emitter close to a metallic nanowire antenna[J ]. Optics Express, 2014, 22(21): 25539-25549.

[30] LIU Hai-tao. DIF CODE for modeling light diffraction in nanostructures[M]. Tianjin: Nankai University, 2010.

[31] PURCELL E M, TORREY H C, POUND R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 1946, 69(1-2): 37-38.

[32] MOHARAM M G, GRANN E B, POMMET D A, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076.

[33] HUGONIN J P, LALANNE P. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization[J]. Journal of the Optical Society of America A, 2005, 22(9): 1844-1849.

[34] ASPNES D E, STUDNA A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J].Physical Review B, 1983, 27(2): 985-1009.

武娜娜, 钟莹, 刘海涛. 超越SNOM探针通光孔径尺寸的金属纳米间隙超分辨测量[J]. 光子学报, 2020, 49(5): 0512001. WU Na-na, ZHONG Ying, LIU Hai-tao1. Superresolving Measurement of the Metallic Nanogap beyond the Aperture Size of the SNOM Probe[J]. ACTA PHOTONICA SINICA, 2020, 49(5): 0512001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!