作者单位
摘要
福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室,福建 福州 350007
近几年新型冠状病毒COVID-19的迅速传播,引起了全球对传染病防控和快速病毒检测技术的高度关注。表面增强拉曼光谱(SERS)作为一种光学分析技术,凭借其独特的分子指纹特性和高检测灵敏度的特点,成为生物医学检测领域的有力工具,对可能大规模暴发的流行性病毒灵敏迅速的检测以及监控提供新颖、高效的光学解决方案。本文对从2021年以来开展的DNA、RNA病毒,尤其是威胁人类生命健康的流行性病毒检测工作当中使用的标记、非标记SERS技术进行梳理,从SERS基底结构建构及功能化修饰,分子探针的设计,高速响应、高灵敏度检测模型构建,生物技术、机器学习方法的联合使用等方面,特别是基于便携式、手持式拉曼光谱仪的研究,对SERS技术在病毒检测领域的应用进展进行了总结和展望。
医用光学 表面增强拉曼光谱 病毒检测 生物传感器 纳米光子学 纳米医学 
中国激光
2024, 51(9): 0907006
Author Affiliations
Abstract
1 Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, China
2 Pengcheng Laboratory, Shenzhen, China
3 Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
Structural coloration generates colors by the interaction between incident light and micro- or nano-scale structures. It has received tremendous interest for decades, due to advantages including robustness against bleaching and environmentally friendly properties (compared with conventional pigments and dyes). As a versatile coloration strategy, the tuning of structural colors based on micro- and nanoscale photonic structures has been extensively explored and can enable a broad range of applications including displays, anti-counterfeiting, and coating. However, scholarly research on structural colors has had limited impact on commercial products because of their disadvantages in cost, scalability, and fabrication. In this review, we analyze the key challenges and opportunities in the development of structural colors. We first summarize the fundamental mechanisms and design strategies for structural colors while reviewing the recent progress in realizing dynamic structural coloration. The promising potential applications including optical information processing and displays are also discussed while elucidating the most prominent challenges that prevent them from translating into technologies on the market. Finally, we address the new opportunities that are underexplored by the structural coloration community but can be achieved through multidisciplinary research within the emerging research areas.
structural coloration metasurfaces nanophotonics 
Photonics Insights
2024, 3(2): R03
Jiajun Wang 1†Peishen Li 2Xingqi Zhao 1Zhiyuan Qian 2[ ... ]Jian Zi 1,4,5,6,*
Author Affiliations
Abstract
1 State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai, China
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing, China
3 College of Physics, Chongqing University, Chongqing, China
4 Institute for Nanoelectronic devices and Quantum computing, Fudan University, Shanghai, China
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
6 Shanghai Research Center for Quantum Sciences, Shanghai, China
Optical bound states in the continuum (BICs) have recently stimulated a research boom, accompanied by demonstrations of abundant exotic phenomena and applications. With ultrahigh quality (Q) factors, optical BICs have powerful abilities to trap light in optical structures from the continuum of propagation waves in free space. Besides the high Q factors enabled by the confined properties, many hidden topological characteristics were discovered in optical BICs. Especially in periodic structures with well-defined wave vectors, optical BICs were discovered to carry topological charges in momentum space, underlying many unique physical properties. Both high Q factors and topological vortex configurations in momentum space enabled by BICs bring new degrees of freedom to modulate light. BICs have enabled many novel discoveries in light–matter interactions and spin–orbit interactions of light, and BIC applications in lasing and sensing have also been well explored with many advantages. In this paper, we review recent developments of optical BICs in periodic structures, including the physical mechanisms of BICs, explored effects enabled by BICs, and applications of BICs. In the outlook part, we provide a perspective on future developments for BICs.
bound state in the continuum light trapping topological charge polarization vortex momentum space light field manipulation photonic crystal slab nanophotonics 
Photonics Insights
2024, 3(1): R01
Author Affiliations
Abstract
1 University of Palermo, Department of Engineering, Palermo, Italy
2 National Institute of Optics-National Research Council, Brescia, Italy
3 University of Brescia, Department of Information Engineering, Brescia, Italy
4 ITMO University, School of Physics and Engineering, Saint-Petersburg, Russia
5 ETH Zurich, Institute for Quantum Electronics, Department of Physics, Optical Nanomaterial Group, Zurich, Switzerland
6 Technical University of Denmark, Department of Electrical and Photonics Engineering, Kongens Lyngby, Denmark
Metasurfaces offer a unique playground to tailor the electromagnetic field at subwavelength scale to control polarization, wavefront, and nonlinear processes. Tunability of the optical response of these structures is challenging due to the nanoscale size of their constitutive elements. A long-sought solution to achieve tunability at the nanoscale is all-optical modulation by exploiting the ultrafast nonlinear response of materials. However, the nonlinear response of materials is inherently very weak, and, therefore, requires optical excitations with large values of fluence. We show that by properly tuning the equilibrium optical response of a nonlocal metasurface, it is possible to achieve sizable variation of the photoinduced out-of-equilibrium optical response on the picosecond timescale employing fluences smaller than 250 μJ / cm2, which is 1 order of magnitude lower than previous studies with comparable reflectivity variations in silicon platforms. Our results pave the way to fast devices with large modulation amplitude.
nonlocal metasurface nanophotonics ultrafast modulation Fano resonance 
Advanced Photonics
2023, 5(6): 066006
Sheng Zhang 1,2†Yongwei Cui 1,2,3Shunjia Wang 1,2Haoran Chen 1,2,3[ ... ]Zhensheng Tao 1,2,*
Author Affiliations
Abstract
1 Fudan University, State Key Laboratory of Surface Physics, Department of Physics, Shanghai, China
2 Fudan University, Key Laboratory of Micro and Nano Photonic Structures, Shanghai, China
3 Shanghai Research Center for Quantum Sciences, Shanghai, China
4 Beijing Normal University, Center for Advanced Quantum Studies, Department of Physics, Beijing, China
5 Fudan University, Institute for Nanoelectronic Devices and Quantum Computing, Shanghai, China
Precise and ultrafast control over photo-induced charge currents across nanoscale interfaces could lead to important applications in energy harvesting, ultrafast electronics, and coherent terahertz sources. Recent studies have shown that several relativistic mechanisms, including inverse spin-Hall effect, inverse Rashba–Edelstein effect, and inverse spin-orbit-torque effect, can convert longitudinally injected spin-polarized currents from magnetic materials to transverse charge currents, thereby harnessing these currents for terahertz generation. However, these mechanisms typically require external magnetic fields and exhibit limitations in terms of spin-polarization rates and efficiencies of relativistic spin-to-charge conversion. We present a nonrelativistic and nonmagnetic mechanism that directly utilizes the photoexcited high-density charge currents across the interface. We demonstrate that the electrical anisotropy of conductive oxides RuO2 and IrO2 can effectively deflect injected charge currents to the transverse direction, resulting in efficient and broadband terahertz radiation. Importantly, this mechanism has the potential to offer much higher conversion efficiency compared to previous methods, as conductive materials with large electrical anisotropy are readily available, whereas further increasing the spin-Hall angle of heavy-metal materials would be challenging. Our findings offer exciting possibilities for directly utilizing these photoexcited high-density currents across metallic interfaces for ultrafast electronics and terahertz spectroscopy.
terahertz optics ultrafast science nanophotonics 
Advanced Photonics
2023, 5(5): 056006
Author Affiliations
Abstract
1 Harvard Medical School, Boston, Massachusetts, United States
2 Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
3 Massachusetts Institute of Technology, Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts, United States
Micro- and nanodisk lasers have emerged as promising optical sources and probes for on-chip and free-space applications. However, the randomness in disk diameter introduced by standard nanofabrication makes it challenging to obtain deterministic wavelengths. To address this, we developed a photoelectrochemical (PEC) etching-based technique that enables us to precisely tune the lasing wavelength with subnanometer accuracy. We examined the PEC mechanism and compound semiconductor etching rate in diluted sulfuric acid solution. Using this technique, we produced microlasers on a chip and isolated particles with distinct lasing wavelengths. These precisely tuned disk lasers were then used to tag cells in culture. Our results demonstrate that this scalable technique can be used to produce groups of lasers with precise emission wavelengths for various nanophotonic and biomedical applications.
microdisk lasers semiconductor precision lasing photoelectrochemical etching laser particle nanophotonics 
Advanced Photonics
2023, 5(5): 056004
作者单位
摘要
中国石油大学(华东)理学院,山东 青岛 266580
具有超高品质因子的光学微腔是构造各种集成光子器件的重要组件,以光子晶体微腔为基础的混合微腔为实现强烈的光和物质相互作用提供了一个新颖的平台,在腔量子电动力学、集成单光子源、量子计算等方面都具有十分广阔的应用前景。本文基于双异质结构光子晶体微腔,结合蝶形金纳米天线等离激元结构,设计实现了一种可见光波段的新型光子-等离激元混合微腔,并通过改变蝶形金纳米天线的间隙、角度、长度、厚度、相对位置等结构参数,利用三维时域有限差分法研究了等离激元纳米结构对混合腔的品质因子、有效模式体积、品质因数的调控规律,模拟结果显示,混合腔的有效模式体积和品质因数分别始终稳定在10-6λ/n3和108λ/n-3数量级,最佳品质因数值可达5.730689×108λ/n-3,优于其他类型的微腔。
光电子学 纳米光子学和光子晶体 光子晶体微腔 等离激元 纳米天线 品质因子 时域有限差分法 
激光与光电子学进展
2023, 60(15): 1525002
作者单位
摘要
1 南京大学 集成电路学院,苏州 215163
2 南京大学 电子科学与工程学院,南京 210093
3 西北大学 化学与材料科学学院,西安 710069
4 四川大学 物理学院,成都 610065
5 中山大学 微电子科学与技术学院,珠海 519082
6 西安交通大学 电子科学与工程学院,西安 710049
7 南京大学 现代工程与应用科学学院,南京 210093
人工设计的光子学器件在现代光学的各个领域都有广阔的应用前景。传统光子学器件的设计通常是基于已知的物理模型,然后通过数值模拟方法对结构进行优化设计。由于器件结构很大程度上依赖于先验模型,所以传统优化设计的自由度是有限的。随着近年来对高性能光子学器件需求的日益增长,具有更高设计自由度的逆向设计方法得到了快速发展。逆向设计方法打破了传统方法的设计局限性,可以在全参数空间中实现高效的参数优化,因此更可能得到具有极限性能的器件结构。本文总结了光子学器件逆向设计的常用方法,并给出了逆向设计在各个光子学领域中的具体应用。随着计算机科学的不断发展,逆向设计方法展现出无与伦比的潜力,有望在各个光学领域中实现更高自由度的光场调控。
遗传算法 梯度下降算法 拓扑优化 神经网络 纳米光子学 Genetic algorithm Gradient descent algorithm Topology optimization Neural network Nanophotonics 
光子学报
2023, 52(6): 0623001
刘宁 1,2,3周谷禹 4杨夕 1,2,3徐纪鹏 1,2,3[ ... ]朱志宏 1,2,3
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学 新型纳米光电信息材料与器件湖南省重点实验室,湖南 长沙 410073
3 国防科技大学 南湖之光实验室,湖南 长沙 410073
4 中国卫星海上测控部,江苏 江阴 214400
高性能的片上纳米激光器对通信、传感以及量子等领域的发展有着至关重要的意义。纳米激光器中高的光学限制因子可以保证更大的模式增益,实现更低的激光器阈值。首先阐明了借助物理气相沉积和原子层沉积制备Si3N4/WS2/Al2O3三明治型纳米激光器阵列的工艺流程;构建了该纳米激光器的仿真模型,在仿真模型中对实际结构进行了简化并分析了Al2O3覆盖层厚度T、Si3N4微盘直径D和厚度H对光学限制因子的影响。光学限制因子随着Al2O3覆盖层T以及Si3N4微盘直径D的增加有先增加后减小的趋势,Si3N4微盘厚度H的减小也可以显著增加激光器的光学限制因子;最后展示了器件的荧光以及扫描电子显微镜的表征结果。该工作为集成光学芯片中可规模制备的高性能纳米激光器打下了良好基础。
纳米光子学 纳米激光器 结构仿真 微纳加工 二维材料 物理气相沉积 nanophotonics nanolaser structural simulation micro-nano processing two-dimensional material physical vapor deposition 
红外与激光工程
2023, 52(6): 20230196
作者单位
摘要
南京大学现代工程与应用科学学院,江苏 南京 210033
超表面是由亚波长尺度的人工原子组成的二维平面超材料,具有操纵电磁波属性的能力。超表面领域的快速发展催生了多种技术/功能器件,包括超表面全息术、矢量涡旋光技术、超透镜、偏振转换器等。主动性超表面是指可以通过电、磁、光照、热、应力等外部刺激对超表面的结构、性质和功能进行灵活调控的超表面。近年来,人们一直致力于研究基于多种调控技术的多功能可调谐超表面,从而实现动态调控电磁波的目的。本文归纳总结了基于多种调控方法的可调谐超表面的研究进展,主要包括基于液晶的可调谐超表面、基于相变材料的可调谐超表面和结构可重构型可调谐超表面,并讨论了不同类型可调谐超表面的优势、面临的挑战以及未来的发展方向。
光学设计 超表面 可调性 液晶 相变材料 微纳光子学 
光学学报
2023, 43(8): 0822004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!