作者单位
摘要
福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室,福建 福州 350007
近几年新型冠状病毒COVID-19的迅速传播,引起了全球对传染病防控和快速病毒检测技术的高度关注。表面增强拉曼光谱(SERS)作为一种光学分析技术,凭借其独特的分子指纹特性和高检测灵敏度的特点,成为生物医学检测领域的有力工具,对可能大规模暴发的流行性病毒灵敏迅速的检测以及监控提供新颖、高效的光学解决方案。本文对从2021年以来开展的DNA、RNA病毒,尤其是威胁人类生命健康的流行性病毒检测工作当中使用的标记、非标记SERS技术进行梳理,从SERS基底结构建构及功能化修饰,分子探针的设计,高速响应、高灵敏度检测模型构建,生物技术、机器学习方法的联合使用等方面,特别是基于便携式、手持式拉曼光谱仪的研究,对SERS技术在病毒检测领域的应用进展进行了总结和展望。
医用光学 表面增强拉曼光谱 病毒检测 生物传感器 纳米光子学 纳米医学 
中国激光
2024, 51(9): 0907006
作者单位
摘要
湖南大学生物学院病原微生物与免疫研究所医学病毒学湖南省重点实验室, 长沙 410082
近年来, 病毒感染疫情频发, 凸显了高效便利的病毒检测技术以及抗病毒药物研制的迫切性。基于成簇的规则间隔短回文重复序列(CRISPR)和CRISPR相关蛋白(Cas)的工程系统在靶向和切割核酸方面具有较高的特异性和效率, 是目前使用最为广泛的基因编辑工具。该系统目前也广泛应用于病毒学研究和相关医疗实践。本文重点介绍了Cas9、Cas12和Cas13这三种最常用的CRISPR/Cas系统在病毒检测和抗病毒治疗中的应用。在病毒检测方面, Cas9通过与荧光传感器、电化学传感器和侧流层析试纸等生物传感器相结合, 提高了生物传感器检测的灵敏度和准确性。Cas12和Cas13则基于其反式切割活性, 目前已经开发了多种技术来检测DNA和RNA病毒, 如SHERLOCK和DETECTER。在抗病毒治疗方面, Cas9已被用于靶向切割病毒DNA, 从而抑制病毒的复制, 其靶标包括DNA病毒的基因组和逆转录病毒的中间产物DNA; 而Cas13则被用于靶向病毒RNA, 其靶标包括RNA病毒的基因组和病毒mRNA。尽管CRISPR/Cas系统在灵敏度、效率和便利度等方面具有多种优势, 但在一些方面仍不可避免地存在局限性, 如脱靶效应、免疫原性和致癌性。本文全面总结了CRISPR/Cas系统应用于病毒检测和抗病毒治疗的现有进展, 为了解该领域相关技术提供了系统的参考。
CRISPR/Cas系统 病毒检测 抗病毒治疗 生物传感器 CRISPR/Cas system virus detection antiviral therapy biosensor 
激光生物学报
2023, 32(6): 0502
刘瑶 1,2尤勋海 1,3赵冰 1,3罗晓莹 4,*陈星 1,2,3,*
作者单位
摘要
1 1.合肥工业大学 工业与装备技术研究院, 合肥 230009
2 2.合肥工业大学 资源与环境工程学院, 合肥 230009
3 3.合肥工业大学 材料科学与工程学院, 合肥 230009
4 4.上海交通大学医学院附属仁济医院 上海市肿瘤研究所 癌基因与相关基因国家重点实验室, 上海 200032
新冠疫情暴发对全球公共卫生构成了巨大威胁, 病毒的快速、准确诊断对新冠疫情防控具有至关重要的作用。近年来, 以纳米材料为基础的电化学传感技术在快速、高灵敏度/高特异性分子诊断方面显示出巨大的潜力。本文简要介绍了新型冠状病毒(SARS-CoV-2)的结构特征及常规检测方法, 总结了电化学生物检测相关传感特点和机制。在此基础上, 详细评述了金纳米材料、氧化物纳米材料、碳基纳米材料等为基础的电化学传感器用于快速、准确检测新冠病毒的研究进展。最后, 展望了基于电化学传感技术在未来生物分子诊断中的应用。
SARS-CoV-2 电化学生物传感器 纳米材料 快速诊断 综述 SARS-CoV-2 electrochemical biosensor nanomaterial rapid detection review 
无机材料学报
2023, 38(1): 32
李妍妍 1,2彭宇思 1,2林成龙 1,2罗晓莹 3[ ... ]杨勇 1,2,*
作者单位
摘要
1 1.中国科学院 上海硅酸盐研究所, 高性能陶瓷与超微结构国家重点实验室, 上海 200050
2 2.中国科学院大学 材料科学与光电技术学院, 北京 100049
3 3.上海交通大学 医学院附属仁济医院, 上海市肿瘤研究所 癌基因与相关基因国家重点实验室, 上海 200032
4 4.上海市疾病预防控制中心, 上海 200336
新型冠状病毒肺炎(Corona Virus Disease 2019, COVID-19)疫情大流行引起全球对此重大突发公共卫生事件的高度关注。新型冠状病毒(SARS-CoV-2)经过多次突变, 出现传染速度加快、免疫逃逸、隐匿性传播等特性, 令防控形势至今仍异常严峻。对患者的早发现、早隔离仍然是目前最有效的防控措施。因此, 迫切需要快速、高灵敏的检测手段来甄别此病毒, 以便及早识别感染者。本文简要介绍了SARS-CoV-2的一般特征, 并针对核酸、抗体、抗原及病原体作为检测靶标的不同检测手段及最新进展进行分类概述; 对一些光学、电学、磁学以及可视化的新型纳米传感器在SARS-CoV-2检测技术上的应用进行了分析。鉴于纳米技术的应用在提高检测灵敏度、特异性以及准确率上具有优势, 本文详细介绍了新型纳米传感器在SARS-CoV-2检测中的研究进展, 包括表面增强拉曼基生物传感器、电化学生物传感器、磁纳米生物传感器以及比色生物传感器等, 并探讨了纳米材料在新型生物传感器构建中的作用和挑战, 为纳米材料研究人员开发各种类型的冠状病毒传感技术提供思路。
SARS-CoV-2 检测方法 核酸 抗体 抗原 纳米材料 生物传感器 综述 SARS-CoV-2 detection method nucleic acid antibody antigen nanomaterial biosensor review 
无机材料学报
2023, 38(1): 3
黄成成 1张永刚 1,*梁兰菊 2,**姚海云 2[ ... ]邱福 1
作者单位
摘要
1 安徽理工大学电气与信息工程学院,安徽 淮南 232001
2 枣庄学院光电工程学院,山东 枣庄 277160
提出一种由石墨烯和金属铝构成的复合结构的太赫兹超表面生物传感器。超表面由金属铝结构形成类电磁诱导透明谐振,并在铝结构表面通过湿法转移一层石墨烯。通过对石墨烯掺杂蚕丝蛋白来改变石墨烯费米能级,从而改变传感器透射光谱的振幅。实验结果表明,该传感器的检测极限可以达到0.35 ng/mL。利用石墨烯狄拉克点的电磁波调控特性和耦合模型对传感器的工作原理进行分析。在生物医学领域,该生物传感器为微量蛋白的高灵敏检测提供了一种方法。
太赫兹 石墨烯 生物传感器 类电磁诱导透明谐振 
激光与光电子学进展
2023, 60(15): 1517001
作者单位
摘要
深圳大学物理与光电工程学院,射频异质异构集成全国重点研究实验室,光电子器件与系统教育部/广东省重点实验室,广东 深圳 518060
面向生物粒子操控方法的研究,在生物医学和生命科学等领域具有重要意义。光镊操控具有无接触与高精度的特点,已被广泛应用于多个领域的研究中。然而,传统光镊的光热效应以及衍射极限都制约着光镊在生物医学领域的更广泛应用和发展。近十年来,研究者们将光热效应化劣势为优势,利用光与热的耦合效应实现了多种粒子的精确捕获及操控,即光致温度场光镊(OTFT)。由于此种新型光镊对光能的利用率极高,能量密度低于传统光镊近3个数量级,并可实现颗粒的大范围操控,极大地拓展了光镊可操控粒子的种类,已经成为纳米技术以及生命科学领域的重要研究工具。温度场光镊仍面临诸多问题,例如对于颗粒界面调控的依赖性以及三维捕获受限等,尤其是在生物光子学的研究中,还需要进一步发展和优化。本文对光致温度场光镊操控基本原理及其在生物医学中的应用两个方面进行了系统阐述,并对其今后的发展与挑战进行了展望。
光镊 光热镊 光流控 光热效应 微流控 生物传感器 
光学学报
2023, 43(14): 1400001
作者单位
摘要
1 重庆理工大学光纤传感与光电检测重庆市重点实验室,重庆 400054
2 重庆理工大学药物化学与分子药理学重庆市重点实验室,重庆 400054
提出一种基于氧化石墨烯(GO)微纳光纤的生物传感器,将其用于狂犬病毒(RV)的免疫检测研究。首先,将标准单模光纤通过熔接机放电形成双锥形光纤,再对双锥形光纤进行熔融拉锥制作出高灵敏度的微纳光纤。然后,在微纳光纤表面修饰GO,并将RV抗原固定于该传感器表面,用于对RV抗体的特异性检测实验。实验结果表明:该生物传感器对RV抗体的检测范围为200 fg/mL~1 ng/mL,检测极限(LOD)约为225.56 fg/mL,其检测灵敏度约为1.099 nm/log(mg·mL-1),解离系数约为2.92×10-11 M;当用于不同的抗体溶液样本和RV阳性血清的对照检测及临床检测时,该免疫传感器对前者的响应非常微弱,而对后者有明显的响应,说明其对RV抗体具有良好的特异性。基于GO修饰微纳光纤的免疫传感器具有制作简单、微纳尺寸、灵敏度高、成本低等优点。
遥感与传感器 光纤光学 微纳光纤 氧化石墨烯 狂犬病毒 生物传感器 
激光与光电子学进展
2023, 60(7): 0728004
作者单位
摘要
中国计量大学光学与电子科技学院,浙江 杭州 310018
为了拓展超材料在太赫兹波段的生物传感应用,设计了一种双开口环结构的太赫兹超材料生物传感器,通过两个等效电容电感(LC)谐振实现了高折射率灵敏度传感。首先,使用有限积分技术(FIT)数值计算了该传感器的太赫兹光谱,并对其进行了结构尺寸优化。然后,在传感器表面放置了一层折射率可变的分析物,通过对不同透射光谱的计算分析,验证了该传感器具备161.06 GHz/RIU(RIU为折射率单位)的折射率灵敏度和1.98的品质因素(FOM)值。最后,采用传统光刻技术和剥离工艺在石英衬底上制作铜金属结构,制备了该传感器,利用其对牛血清白蛋白(BSA)溶液进行了实际测试,实验得到传感灵敏度为59.02 GHz/(ng·mm-2)和检测下限为0.004 mg/mL。
传感器 生物传感器 太赫兹超材料 双开口环结构 
光学学报
2023, 43(4): 0428002
作者单位
摘要

基于液晶液滴体系的生物传感器因其具有较高的检测灵敏度、特异的光学信号,在检测细菌、病毒、酶活性、蛋白质及生物分子相互作用等方面展现其独特优势。液晶液滴生物传感器性能与液晶液滴的尺寸、均一性及其界面的特异识别能力密切相关。因此,制备具有尺寸可控、界面化学可调的液晶液滴成为当前研究的重点。本文从液晶液滴的取向介绍出发,着重概述了近年来液晶液滴制备的研究进展及其在生物检测领域应用中的发展状况。同时介绍了液晶液滴复合材料的制备和液晶液滴的表面固定及其在生物传感中的应用,最后讨论了液晶液滴生物传感器目前遇到的瓶颈以及未来可能的研究方向。

液晶与显示
2022, 37(12): 1531
作者单位
摘要
1 西北大学 信息科学与技术学院,西安 710127
2 西北大学 物理学院,西安 710127
随着生物传感器应用的日益广泛,对新型生物传感器的开发已成为世界科技发展的重要战略。作为直接宽禁带半导体的氧化锌(ZnO),因具有无毒性、生物相容性良好、物理化学性能稳定等优异性能而被应用于电子器件、光电子器件、生物传感器等领域,尤其基于纳米ZnO的生物传感器研究已成为防疫和医疗领域的一个新热点。本文介绍了目前纳米ZnO的几种主要制备方法(包括水热法、磁控溅射法、溶胶凝胶法和原子层沉积法等)及其优缺点,对比分析了所制备ZnO的优异性能尤其增强性能的方法(如优化工艺、掺杂、复合、异质结等)。着重阐述了纳米ZnO材料在生物传感器领域的应用,根据其信号处理元件的工作原理不同,将ZnO纳米材料所制备的生物传感器分为电化学生物传感器、光学生物传感器、压电生物传感器、热学生物传感器等,分别详细介绍了其结构、工作原理及其对生物检测的突出性能与发展现状。最后,对纳米ZnO生物传感器目前所面临的挑战和未来的发展趋势进行了总结和展望。
氧化锌 生物传感器 纳米材料 光学传感器 电化学传感器 Zinc oxide Biosensors Nanomaterials Optical sensors Electrochemical sensors 
光子学报
2022, 51(10): 1016001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!