中国激光, 2021, 48 (2): 0202013, 网络出版: 2021-01-07   

基于激光加工的平面型微型超级电容器 下载: 1967次特邀综述

Planar Micro-Supercapacitor Based on Laser Processing
作者单位
1 原子分子簇科学教育部重点实验室, 光电转换材料北京市重点实验室, 北京理工大学化学与化工学院&机械与车辆学院, 北京 100081;
2 武汉光电国家研究中心, 华中科技大学光学与电子信息学院, 湖北 武汉 430074
3 教育部先进材料加工技术重点实验室, 摩擦学国家重点实验室, 清华大学机械工程系&化学工程系, 北京 100084;
引用该论文

白聪聪, 张峻豪, 高畅, 靳绪庭, 李欣, 熊伟, 闫剑锋, 张志攀, 赵扬, 曲良体. 基于激光加工的平面型微型超级电容器[J]. 中国激光, 2021, 48(2): 0202013.

Congcong Bai, Junhao Zhang, Chang Gao, Xuting Jin, Xin Li, Wei Xiong, Jianfeng Yan, Zhipan Zhang, Yang Zhao, Liangti Qu. Planar Micro-Supercapacitor Based on Laser Processing[J]. Chinese Journal of Lasers, 2021, 48(2): 0202013.

参考文献

[1] Yu L H, Yi Y Y, Yao T, et al. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring[J]. Nano Research, 2019, 12(2): 331-338.

[2] Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors[J]. Energy & Environmental Science, 2014, 7(3): 867-884.

[3] Yu L H, Fan Z D, Shao Y L, et al. Versatile N-doped MXene ink for printed electrochemical energy storage application[J]. Advanced Energy Materials, 2019, 9(34): 1901839.

[4] Lin J, Zhang C G, Yan Z, et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance[J]. Nano Letters, 2013, 13(1): 72-78.

[5] Wu M M, Li Y R, Yao B W, et al. A high-performance current collector-free flexible in-plane micro-supercapacitor based on a highly conductive reduced graphene oxide film[J]. Journal of Materials Chemistry A, 2016, 4(41): 16213-16218.

[6] Shao Y L, Li J M, Li Y G, et al. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films[J]. Mater Horiz, 2017, 4(6): 1145-1150.

[7] Yoo J J, Balakrishnan K, Huang J, et al. Ultrathin planar graphene supercapacitors[J]. Nano Letters, 2011, 11(4): 1423-1427.

[8] Liu Y Q, Weng B, Xu Q, et al. Facile fabrication of flexible microsupercapacitor with high energy density[J]. Advanced Materials Technologies, 2016, 1(9): 1600166.

[9] Peng Y Y, Akuzum B, Kurra N, et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage[J]. Energy & Environmental Science, 2016, 9(9): 2847-2854.

[10] Cai J G, Lv C, Watanabe A. Laser direct writing and selective metallization of metallic circuits for integrated wireless devices[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 915-924.

[11] Wang X Z, Zhang Q M. On-chip microsupercapacitors: from material to fabrication[J]. Energy Technology, 2019, 7(11): 1900820.

[12] Yadav P, Basu A, Suryawanshi A, et al. Highly stable laser-scribed flexible planar microsupercapacitor using mushroom derived carbon electrodes[J]. Advanced Materials Interfaces, 2016, 3(11): 1600057.

[13] Li X X, Ma Y N, Shen P Z, et al. Self-healing microsupercapacitors with size-dependent 2D MXene[J]. ChemElectroChem, 2020, 7(3): 821-829.

[14] Wang S L, Wang Q, Zeng W, et al. A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode[J]. Nano-Micro Letters, 2019, 11(1): 70.

[15] Zhang P P, Wang L L, Wang F X, et al. A nonaqueous Na-ion hybrid micro-supercapacitor with wide potential window and ultrahigh areal energy density[J]. Batteries & Supercaps, 2019, 2(11): 918-923.

[16] Sohajda Z, Széll N, Revák Á, et al. Retinal nerve fibre layer thickness change after CO2 laser-assisted deep sclerectomy surgery[J]. Clinical Ophthalmology, 2020, 14: 1749-1757.

[17] Doğanay Yıldız E, Dinçer B, Fidan M E. Effect of different laser-assisted irrigation activation techniques on apical debris extrusion[J]. Acta Odontologica Scandinavica, 2020, 78(5): 332-336.

[18] Abdul Salam A A, Shilpa T, George S D, et al. Laser-assisted crystallization: an alternative tool to crystallize biomolecules[J]. Acta Crystallographica Section A Foundations and Advances, 2017, 73(a2): C351.

[19] Noh J H, Fowlkes J D, Timilsina R, et al. Pulsed laser-assisted focused electron-beam-induced etching of titanium with XeF2: enhanced reaction rate and precursor transport[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4179-4184.

[20] Waibel J S, Wulkan A J, Shumaker P R. Treatment of hypertrophic scars using laser and laser assisted corticosteroid delivery[J]. Lasers in Surgery and Medicine, 2013, 45(3): 135-140.

[21] Liu X Q, Chen Q D, Guan K M, et al. Dry-etching-assisted femtosecond laser machining[J]. Laser & Photonics Reviews, 2017, 11(3): 1600115.

[22] Huang X, Guo Q, Kang S, et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence[J]. ACS Nano, 2020, 14: 3150-3158.

[23] Sataeva N E, Boinovich L B, Emelyanenko K A, et al. Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings with standing multiple degradation factors[J]. Surface and Coatings Technology, 2020, 397: 125993.

[24] Manshina A, Povolotskiy A, Ivanova T, et al. Laser-assisted metal deposition from CuSO4-based electrolyte solution[J]. Laser Physics Letters, 2007, 4(2): 163-167.

[25] Cai J G, Lv C, Aoyagi E, et al. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23987-23996.

[26] Cheng H H, Zhao F, Xue J L, et al. One single graphene oxide film for responsive actuation[J]. ACS Nano, 2016, 10(10): 9529-9535.

[27] Boruah B D, Maji A, Misra A. Flexible array of microsupercapacitor for additive energy storage performance over a large area[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15864-15872.

[28] Yu Y D, Zhu W, Wang Y L, et al. Towards high integration and power density: Zigzag-type thin-film thermoelectric generator assisted by rapid pulse laser patterning technique[J]. Applied Energy, 2020, 275: 115404.

[29] Gong D W, Long J Y, Jiang D F, et al. Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17511-17518.

[30] Cai M Y, Pan R, Liu W J, et al. Laser-assisted doping and architecture engineering of Fe3O4 nanoparticles for highly enhanced oxygen evolution reaction[J]. ChemSusChem, 2019, 12(15): 3562-3570.

[31] Liang P, Zhang H J, Su Y B, et al. In situ preparation of a binder-free nano-cotton-like CuO-Cu integrated anode on a current collector by laser ablation oxidation for long cycle life Li-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(37): 19781-19789.

[32] Liang P, Zhang H J, Pan B Y, et al. Binder-free carbon-coated nanocotton transition metal oxides integrated anodes by laser surface ablation for lithium-ion batteries[J]. Surface and Interface Analysis, 2019, 51(8): 874-881.

[33] Jiang D F, Long J Y, Cai M Y, et al. Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of W/Cu joining[J]. Materials & Design, 2017, 114: 185-193.

[34] Jiang D F, Long J Y, Han J P, et al. Comprehensive enhancement of the mechanical and thermo-mechanical properties of W/Cu joints via femtosecond laser fabricated micro/nano interface structures[J]. Materials Science and Engineering: A, 2017, 696: 429-436.

[35] Li Y Q, Shi X M, Lang X Y, et al. Remarkable improvements in volumetric energy and power of 3D MnO2 microsupercapacitors by tuning crystallographic structures[J]. Advanced Functional Materials, 2016, 26(11): 1830-1839.

[36] Zhou F, Huang H, Xiao C, et al. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors[J]. Journal of the American Chemical Society, 2018, 140(26): 8198-8205.

[37] Liu W, Lu C, Wang X, et al. High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film[J]. ACS Nano, 2015, 9(2): 1528-1542.

[38] Lim Y, Yoon J, Yun J, et al. Biaxially stretchable, integrated array of high performance microsupercapacitors[J]. ACS Nano, 2014, 8(11): 11639-11650.

[39] Cheng H H, Ye M H, Zhao F, et al. A general and extremely simple remote approach toward graphene bulks with in situ multifunctionalization[J]. Advanced Materials, 2016, 28(17): 3305-3312.

[40] Wang Y N, Wang Y, Zhang P P, et al. Laser-induced freestanding graphene papers: a new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures[J]. Small, 2018, 14(36): 1802350.

[41] Paterno L G, et al. Laser reduction of graphene oxide/zinc oxide nanoparticle nanocomposites as a one-step process for supercapacitor fabrication[J]. Physica Status Solidi (a), 2020, 217(11): 1901046.

[42] Wang W T, Lu L S, Xie Y X, et al. A highly stretchable microsupercapacitor using laser-induced graphene/NiO/Co3O4 electrodes on a biodegradable waterborne polyurethane substrate[J]. Advanced Materials Technologies, 2020, 5(2): 1900903.

[43] Wang W T, Lu L S, Xie Y X, et al. Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors[J]. Applied Surface Science, 2020, 504: 144487.

[44] 吴雪峰, 尹海亮, 李强. 飞秒激光加工碳纳米管薄膜试验研究[J]. 中国激光, 2019, 46(9): 0902002.

    Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 2019, 46(9): 0902002.

[45] Gao J, Shao C X, Shao S X, et al. Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array[J]. Small, 2018, 14(37): 1801809.

[46] Pu X, Liu M M, Li L X, et al. Wearable textile-based in-plane microsupercapacitors[J]. Advanced Energy Materials, 2016, 6(24): 1601254.

[47] Jiang Y, Shao H B, Li C X, et al. Versatile graphene oxide putty-like material[J]. Advanced Materials, 2016, 28(46): 10287-10292.

[48] Yoo J, Byun S, Lee C W, et al. Precisely geometry controlled microsupercapacitors for ultrahigh areal capacitance, volumetric capacitance, and energy density[J]. Chemistry of Materials, 2018, 30(12): 3979-3990.

[49] Kwon S, Jung D, Lim H, et al. Laser-assisted selective lithography of reduced graphene oxide for fabrication of graphene-based out-of-plane tandem microsupercapacitors with large capacitance[J]. Applied Physics Letters, 2017, 111(14): 143903.

[50] Gao C, Gao J, Shao C X, et al. Versatile origami micro-supercapacitors array as a wind energy harvester[J]. Journal of Materials Chemistry A, 2018, 6(40): 19750-19756.

[51] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 2013, 4: 1475.

[52] Li X, Cai W, Teh K S, et al. High-voltage flexible microsupercapacitors based on laser-induced graphene[J]. ACS Applied Materials & Interfaces, 2018, 10: 26357-26364.

[53] Luo J J, Fan F R, Jiang T, et al. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit[J]. Nano Research, 2015, 8(12): 3934-3943.

[54] Zhang W L, Lei Y J, Ming F W, et al. Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors[J]. Advanced Energy Materials, 2018, 8(27): 1801840.

[55] Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5: 5714.

[56] Ye R Q, Chyan Y, Zhang J B, et al. Laser-induced graphene formation on wood[J]. Advanced Materials, 2017, 29(37): 1702211.

[57] Chyan Y, Ye R Q, Li Y L, et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food[J]. ACS Nano, 2018, 12(3): 2176-2183.

[58] Hu Y, Cheng H H, Zhao F, et al. All-in-one graphene fiber supercapacitor[J]. Nanoscale, 2014, 6(12): 6448-6451.

[59] Tran T X, Choi H, Che C H, et al. Laser-induced reduction of graphene oxide by intensity-modulated line beam for supercapacitor applications[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39777-39784.

[60] Duy L X, Peng Z W, Li Y L, et al. Laser-induced graphene fibers[J]. Carbon, 2018, 126: 472-479.

[61] 苏永生, 李亮, 何宁, 等. 聚晶金刚石表面微结构的激光加工实验[J]. 中国激光, 2014, 41(8): 0803004.

    Su Y S, Li L, He N, et al. Experiment of laser machining of micro-structures on the surface of polycrystalline diamond[J]. Chinese Journal of Lasers, 2014, 41(8): 0803004.

[62] Li R Z, Peng R, Kihm K D, et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science, 2016, 9(4): 1458-1467.

[63] Jiang Q, Kurra N, Xia C, et al. Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy[J]. Advanced Energy Materials, 2017, 7(1): 1601257.

[64] Zhou W P, Bai S, Ma Y, et al. Laser-direct writing of silver metal electrodes on transparent flexible substrates with high-bonding strength[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24887-24892.

[65] Mu X M, Du J W, Li Y, et al. One-step laser direct writing of boron-doped electrolyte as all-solid-state microsupercapacitors[J]. Carbon, 2019, 144: 228-234.

[66] Lazauskas A, Marcinauskas L, Andrulevicius M. Modification of graphene oxide/V2O5·nH2O nanocomposite films via direct laser irradiation[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18877-18884.

[67] Fu X Y, Chen D L, Liu Y, et al. Laser reduction of nitrogen-rich carbon nanoparticles@graphene oxides composites for high rate performance supercapacitors[J]. ACS Applied Nano Materials, 2018, 1(2): 777-784.

[68] Huang Y H, Zeng L, Liu C G, et al. Laser direct writing of heteroatom (N and S)-doped graphene from a polybenzimidazole ink donor on polyethylene terephthalate polymer and glass substrates[J]. Small, 2018, 14(44): 1803143.

[69] Lee W H, Suk J W, Chou H, et al. Selective-area fluorination of graphene with fluoropolymer and laser irradiation[J]. Nano Letters, 2012, 12(5): 2374-2378.

[70] Peng Z W, Ye R Q, Mann J A, et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano, 2015, 9(6): 5868-5875.

[71] Clerici F, Fontana M, Bianco S, et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10459-10465.

[72] Guo L, Zhang Y L, Han D D, et al. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides[J]. Advanced Optical Materials, 2014, 2(2): 120-125.

[73] Zheng W J, Zhang Y, Niu K Y, et al. Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity[J]. Chemical Communications (Cambridge, England), 2018, 54(97): 13726-13729.

[74] 龙江游, 黄婷, 叶晓慧, 等. 低功率CO2激光辐照对多层石墨烯结构的影响[J]. 中国激光, 2012, 39(12): 1206001.

    Long J Y, Huang T, Ye X H, et al. Effects of low power CO2 laser irradiation on structure of multilayer graphene[J]. Chinese Journal of Lasers, 2012, 39(12): 1206001.

[75] 廖嘉宁, 王欣达, 周兴汶, 等. 飞秒激光直写铜微电极研究[J]. 中国激光, 2019, 46(10): 1002013.

    Liao J N, Wang X D, Zhou X W, et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 2019, 46(10): 1002013.

[76] 王金艳, 李奇, 陈曦, 等. 全固态高重复频率244nm紫外激光器[J]. 中国激光, 2019, 46(9): 0901010.

    Wang J Y, Li Q, Chen X, et al. A high-frequency all-solid-state ultraviolet laser at 244nm[J]. Chinese Journal of Lasers, 2019, 46(9): 0901010.

[77] Shi H H, Jang S, Naguib H E. Freestanding laser-assisted reduced graphene oxide microribbon textile electrode fabricated on a liquid surface for supercapacitors and breath sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27183-27191.

[78] Liu C L, Liang H W, Wu D, et al. Direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor[J]. Advanced Electronic Materials, 2018, 4(7): 1800092.

[79] Song W X, Zhu J X, Gan B H, et al. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene[J]. Small, 2018, 14(1): 1702249.

[80] Mao X L, Xu J H, He X, et al. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes[J]. Applied Surface Science, 2018, 435: 1228-1236.

[81] Li L, Zhang J B, Peng Z W, et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene[J]. Advanced Materials, 2016, 28(5): 838-845.

[82] Feng W D, Li X, Lin S Y, et al. Enhancing the efficiency of graphene oxide reduction in low-power digital video disc drives by a simple precursor heat treatment[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48162-48171.

[83] Gao W, Singh N, Song L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 2011, 6(8): 496-500.

[84] Kwon S, Yoon Y, Ahn J, et al. Facile laser fabrication of high quality graphene-based microsupercapacitors with large capacitance[J]. Carbon, 2018, 137: 136-145.

[85] Niu M C, Yao Y B, Shi Y L, et al. Multifunctional green sensor prepared by direct laser writing of modified wood component[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10364-10372.

[86] Shi X Y, Zhou F, Peng J X, et al. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity[J]. Advanced Functional Materials, 2019, 29(50): 1902860.

[87] Ye J L, Tan H B, Wu S L, et al. Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output[J]. Advanced Materials, 2018, 30(27): 1801384.

[88] Shi Q L, Xiang Y J, Ji G H, et al. Flexible planar-integrated micro-supercapacitors from electrochemically exfoliated graphene as advanced electrodes prepared by flash foam-assisted stamp technique on paper[J]. Energy Technology, 2019, 7(11): 1900664.

[89] Kurra N, Ahmed B, Gogotsi Y, et al. MXene-on-paper coplanar microsupercapacitors[J]. Advanced Energy Materials, 2016, 6(24): 1601372.

[90] Xu C Y, Jiang L, Li X, et al. Miniaturized high-performance metallic 1T-phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses[J]. Nano Energy, 2020, 67: 104260.

[91] Jiao S Q, Zhou A G, Wu M Z, et al. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays[J]. Advanced Science, 2019, 6(12): 1900529.

[92] Li Q, Wang Q Z, Li L L, et al. Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections[J]. Advanced Energy Materials, 2020, 10(24): 2000470.

[93] Huang K C, Lin C H. S A K, et al. Laser printer patterned sacrificed layer for arbitrary design and scalable fabrication of the all-solid-state interdigitated in-planar hydrous ruthenium oxide flexible micro supercapacitors[J]. Journal of Power Sources, 2019, 417: 108-116.

[94] Zhang W L, Jiang Q, Lei Y J, et al. Wettability-driven assembly of electrochemical microsupercapacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20905-20914.

[95] Brousse K, Pinaud S, Nguyen S, et al. Facile and scalable preparation of ruthenium oxide-based flexible micro-supercapacitors[J]. Advanced Energy Materials, 2020, 10(6): 1903136.

[96] Jiang K Y, Baburin I A, Han P, et al. Interfacial approach toward benzene-bridged polypyrrole film-based micro-supercapacitors with ultrahigh volumetric power density[J]. Advanced Functional Materials, 2020, 30(7): 1908243.

[97] Jiang H Q, Tong L, Liu H D, et al. Graphene-metal-metastructure monolith via laser shock-induced thermochemical stitching of MOF crystals[J]. Matter, 2020, 2(6): 1535-1549.

[98] Basu A, Roy K, Sharma N, et al. CO2 laser direct written MOF-based metal-decorated and heteroatom-doped porous graphene for flexible all-solid-state microsupercapacitor with extremely high cycling stability[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31841-31848.

[99] Wu H, Zhang W L, Kandambeth S, et al. Conductive metal-organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors[J]. Advanced Energy Materials, 2019, 9(21): 1900482.

[100] Mu X W, Wen Q H, Ou G, et al. A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries[J]. Nano Energy, 2018, 51: 83-90.

[101] 张健, 吴锐欢, 李泽曦, 等. 激光加工中双工位加工系统的研究[J]. 中国激光, 2013, 40(10): 1003003.

    Zhang J, Wu R H, Li Z X, et al. Research on double-station processing system in laser processing[J]. Chinese Journal of Lasers, 2013, 40(10): 1003003.

白聪聪, 张峻豪, 高畅, 靳绪庭, 李欣, 熊伟, 闫剑锋, 张志攀, 赵扬, 曲良体. 基于激光加工的平面型微型超级电容器[J]. 中国激光, 2021, 48(2): 0202013. Congcong Bai, Junhao Zhang, Chang Gao, Xuting Jin, Xin Li, Wei Xiong, Jianfeng Yan, Zhipan Zhang, Yang Zhao, Liangti Qu. Planar Micro-Supercapacitor Based on Laser Processing[J]. Chinese Journal of Lasers, 2021, 48(2): 0202013.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!