电光与控制, 2020, 27 (11): 91, 网络出版: 2020-12-25  

基于ARM的LFMCW雷达测距系统设计与实现

Design and Implementation of LFMCW Radar Ranging System Based on ARM
作者单位
石家庄铁道大学电气与电子工程学院, 石家庄 050043
摘要
为实现近距离目标的准确测量, 充分利用线性调频连续波(LFMCW)信号的优良特性, 基于ARM单片机设计实现了毫米波LFMCW雷达测距系统。该系统采用“ARM+PLL+射频收发器”的结构, 其中,ARM单片机为主控芯片, 控制锁相环(PLL)和77 GHz射频收发器, 完成LFMCW信号的发射和接收, 同时使用ARM内部的ADC对中频回波进行IQ双路差分采样, 并在ARM内部实现快速傅里叶变换(FFT), 提取目标距离信息。当调制信号带宽为3.2 GHz, 调制信号周期为2 ms时, 该雷达系统可实现对2 m内目标的高精度测距, 误差距离控制在0.03 m内。实验结果表明, 系统能够通过发射宽带LFMCW信号, 实现近距离目标的有效探测, 具有探测精度高、通用性强、可靠性好、体积小等优点。
Abstract
In order to achieve accurate measurement of close range targets and make full use of the excellent characteristics of Linear Frequency Modulated Continuous Wave (LFMCW),a millimeter wave LFMCW radar ranging system is designed based on ARM single chip.The system adopts the structure of “ARM+Phase-Locked Loop (PLL)+RF transceiver”,uses STM32F3 series ARM MCU as the main control chip for controlling the PLL and 77 GHz RF transceiver chip to complete the transmission and reception of the LFMCW signal,and uses the ARM internal ADC to perform IQ dual differential sampling on the intermediate frequency echo.The Fast Fourier Transform (FFT) is implemented inside the ARM to extract the target distance information.When the bandwidth of the modulated signal is 3.2 GHz and the period is 2 ms,the radar system can implement high-precision ranging to the targets within 2 m with an error less than 0.03 m.The experimental results show that the system can effectively detect short-range targets by transmitting broadband LFMCW signals,and has the advantages of high detection accuracy,strong versatility,good reliability and small volume.
参考文献

[1] WAGNER C,FEGER R,HADERER A,et al.A 77 GHz FMCW radar using a digital phase-locked synthesizer[C]//International Microwave Symposium,2008:351-354.

[2] HYUN E,OH W,LEE J H,et al.Design and implementation of automotive 77 GHz FMCW radar system based on DSP and FPGA[C]//International Conference on Consumer Electronics,2011:517-518.

[3] 孟欣喜,陈文会,刘小民,等.LFMCW雷达测距系统及其信号处理算法的设计[J].科学技术与工程,2011,11(33):8191-8194.

[4] 牟昱舟.24 GHz线性调频连续波测距雷达系统设计[C]//中国电子学会:中国电子学会微波分会.2019年全国微波毫米波会议论文集(上册),广州:中国电子学会,2019:181-184.

[5] ADI公司.ADI公司推出新款高性能PLL频率合成器[J].微型机与应用,2012,31(2):40.

[6] 崔春宽,何少斌,李东浩,等.77 GHz毫米波雷达传感器技术研究[J].汽车实用技术,2018(1):17-20.

[7] 贾玉柱,赵磊.基于STM32F303ARM的手持式自整角机信号采集仪的设计[J].武汉船舶职业技术学院学报,2018,17(1):15-19.

[8] 宋惠轩.24 GHz车载雷达射频前端设计[D].西安:西安电子科技大学,2014.

[9] 侯志伟,包理群.基于STM32的多重ADC采样技术研究与应用[J].工业仪表与自动化装置,2019(3):28-32.

[10] 付凯城,张竹馨,谢跃辉,等.一种提高FMCW SAR距离分辨率的补偿方法[J].电光与控制,2016,23(12):23-26,76.

徐晴, 马月红, 张伟涛, 郭治锐, 惠蕙. 基于ARM的LFMCW雷达测距系统设计与实现[J]. 电光与控制, 2020, 27(11): 91. XU Qing, MA Yuehong, ZHANG Weitao, GUO Zhirui, HUI Hui. Design and Implementation of LFMCW Radar Ranging System Based on ARM[J]. Electronics Optics & Control, 2020, 27(11): 91.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!