红外与毫米波学报, 2015, 34 (1): 14, 网络出版: 2015-03-23  

甚长波量子阱红外探测器中的双激发态工作机理

The working mechanism of the double excited states in the very long wavelength quantum well infrared detector
作者单位
1 中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 中国科学院物理研究所, 北京 100080
摘要
通过对甚长波量子阱红外探测器的变温变偏压光谱实验, 发现了光电流谱峰值响应波长与半高宽随偏置电压和温度变化均会发生变化, 尤其以小偏压下峰值移动明显.结合器件能带结构计算的结果, 提出了甚长波量子阱红外探测器中双激发态工作模型, 并阐明了其中束缚态-准束缚态跃迁模式中准束缚态的物理特性, 包括隧穿特性和热离化特性, 以及不同工作条件下这两种物理过程在形成光电流时的主导性.同时, 验证了甚长波量子阱红外探测器件的第一激发态随外界工作条件的变化会呈现出准束缚到准连续的变化特性.最后, 揭示了在甚长波量子阱红外探测器工作中束缚态-准束缚态跃迁工作模式对于降低器件暗电流、提升器件工作温度、提高器件探测率的有效性.
Abstract
The temperature-and voltage bias dependent photocurrent spectra of very long wavelength GaAs/AlGaAs quantum well infrared photodetectors were studied by spectroscopic measurements and the corresponding theoretical calculations. It is found that the peak response wavelength will shift with the changing of voltage bias and temperature. With the assistance of band structure calculations, we proposed a model of the double excited states which explains the experimental observations very well. Meanwhile, the working mechanism of the quasi-bound state confined in the quantum well, including the processes of tunneling and thermionic emission, were also investigated in detail. Based on our model, two transition processes, including the ground state to the first excited state transition and the ground state to the continuous state transition have been separated from the photocurrent spectrum. The two normalized photocurrent spectra peak wavelength agreed reasonably well with the calculating results. The results allow a better understanding of bound-to-quasibound state transition and bound-to-quasi-continuous state transition and thus a better optimization of the QWIP performance.
参考文献

[1] Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Phys. Tech. 2011, 54(3): 136-154.

[2] Gunapala S D, Ting D Z, Hill C J, et al. Large area Ⅲ-Ⅴ infrared focal planes[J]. Infrared Phys. Tech. 2011, 54(3): 155-163.

[3] Dong Sh, Li N, Chen S H, et al.Impact ionization in quantum well infrared photodetectors with different number of periods[J]. J. Appl.Phys. 2012, 111(3): 034504.

[4] Zhai ShQ, Liu JQ, Wang XJ, et al. 19μm quantum cascade infrared photodetectors[J]. Appl. Phys. Lett. 2013, 102(19): 191-120.

[5] Rogalski A. Infrared Detectors for the Future[J]. Acta Phys. Pol. A. 2009, 116(3): 389-406.

[6] Gunapala S D, Bandara S V, Liu J K, et al. Quantum well infrared photodetector research and development at Jet Propulsion Laboratory[J]. Infrared Phys. Tech. 2001, 42(3-5): 267-282.

[7] Lu W, Li N, Zhen H L, et al. Development of an infrared detector: Quantum well infrared photodetector[J]. Sci. Sin-Phys. Mech. Astron.(陆卫, 李宁, 甄红楼, 等.中国科学G辑物理学力学天文学), 2009, 52(7): 969-977.

[8] Li N, Guo F M, Xiong D Y, et al. 256times1 very long wavelength QWIP FPAs[J]. Infrared and Laser Engineering.(李宁, 郭方敏, 熊大元, 等.红外与激光工程), 2006, 35(6): 756-758.

[9] Coon D D, Karunasiri R P G. New mode of IR detection using quantum wells[J]. Appl. Phys. Lett. 1984, 45(6): 649-651.

[10] Levine B F, Choi K K, Bethea C G, et al. New 10μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices[J]. Appl. Phys. Lett. 1987, 50(16): 1092-1094.

[11] Levine B F, Bethea C G, Choi K K, et al. Bound-to-extended state absorption GaAs superlattice transport infrared detectors[J]. J. Appl. Phys. 1988, 64(3): 1591-1593.

[12] Steele A G, Liu H C, Buchanan M, et al. Importance of the upper state position in the performance of quantum well intersubband infrared detectors[J]. Appl. Phys. Lett. 1991, 59(27): 3625-3627.

[13] Levine B F, Zussman A, Gunapala S D, et al. Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors[J]. J. Appl. Phys, 1992, 72(9): 4429-4443.

[14] Gunapala S D, Park J S, Sarusi G, et al. 15-μm 128×128GaAs/AlxGa1-xAs quantum well infrared photodetector focal plane array camera[J]. IEEETrans. on Electron Devices, 1997, 44(1): 45-50.

[15] Gunapala S D, Liu J K, Park J S, et al. 9-μm cutoff 256×256GaAs/AlxGa1-xAs quantum well infrared photodetector hand-held camera[J]. IEEETrans. on Electron Devices, 1997, 44(1): 51-57.

[16] Schneider H, Liu H C. Quantum Well Infrared Photodetectors: Physics and Applications[M]. NewYork: Springer, 2007.

[17] Gunapala S D, Bandara KM S V, Levine B F, et al. High performance InGaAs/GaAs quantum well infrared photodetectors[J]. Appl.Phys.Lett, 1994, 64(25): 3431-3433.

[18] Panand J L, Fonstad Jr C G. Theory, fabrication and characterization of quantum well infrared photodetectors[J]. Materials Science and Engineering Reports, 2000, 28(3-4): 65-147.

[19] Chang W H, Hsu T M, Huang C C, et al. Photocurrent studies of the carrier escape process from InAs self-assembled quantum dots[J]. Phys. Rev. B, 2000, 62(11): 6959-6962.

[20] Gonschorek M, Schmidt H, Bauer J, et al. Thermally assisted tunneling processes in InxGa1-xAs/GaAs quantum-dot structures[J]. Phys. Rev. B, 2006, 74(11): 115312(1-13).

[21] Fu Y, Lu W. Physics of Semiconductor Quantum Devices[M]. Beijing: Science Press(傅英, 陆卫.半导体量子器件物理.北京: 科学出版社), 2005.

[22] Vurgaftman I, Meyer J R, Ram-MohanL R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. J. Appl. Phys., 2001, 89(11): 5815-5875.

刘希辉, 周孝好, 王禄, 孙庆灵, 廖开升, 黄亮, 李志锋, 李宁. 甚长波量子阱红外探测器中的双激发态工作机理[J]. 红外与毫米波学报, 2015, 34(1): 14. LIU Xi-Hui, ZHOU Xiao-Hao, WANG Lu, SUN Qing-Ling, LIAO Kai-Sheng, HUANG Liang, LI Zhi-Feng, LI Ning. The working mechanism of the double excited states in the very long wavelength quantum well infrared detector[J]. Journal of Infrared and Millimeter Waves, 2015, 34(1): 14.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!