光学学报, 2016, 36 (5): 0528002, 网络出版: 2016-05-03   

空间方差构建在激光雷达光子计数数据堆栈修正中的应用

Application of Spatial Variance Construction in Correction of Pile-Up Effects of Lidar Photon-Counting Data
作者单位
西安理工大学机械与精密仪器工程学院,陕西 西安 710048
摘要
激光雷达近场回波信号较强,容易使光子计数系统产生数据堆栈现象,而死区时间是修正数据堆栈的重要因子。构建了一种激光雷达光子计数数据廓线的空间方差数学计算模型,用于评价光子计数数据的泊松分布质量。利用计算分析结果估算激光雷达光子计数系统死区时间,进而修正光子计数数据中遭受数据堆栈的数据。计算结果表明,激光雷达远场信号基本符合泊松分布,而近场信号不符合,但是死区时间修正后的光子计数数据的泊松分布特性可得到明显改善。通过最小化数据方差与均值的偏离程度,估算系统死区时间以修正数据堆栈现象,使得光子计数数据最大化地服从泊松分布。研究结果表明,长距离扫描激光雷达系统所应用的Licel数据记录仪TR40-160光子计数系统的死区时间约为3.402 ns,修正后的激光雷达数据堆栈现象得到明显改善。
Abstract
Due to the strong intensity of lidar return signal in the near field, the photon-counting system in lidar applications suffers from the pile-up effect, which can be corrected by the parameter of dead time. A mathematical model is constructed to calculate the spatial variance, which is used to evaluate the quality of Poisson distribution of lidar data. Furthermore, the analysis results of the spatial variance are utilized to estimate the dead time of the lidar photon-counting system and to correct the pile-up effect. The calculation results indicate that the photon-counting data in the far field of lidar conforms to the Poisson distribution, but the data in the near field does not. However, the Poisson distribution characteristic of the photon-counting data can be improved notably by the dead time correction. Therefore, the system dead time can be estimated by minimizing the deviation between the variance and the mean of lidar data. One can correct the pile-up effect of photon-counting data and make the data profile conform to the Poisson distribution at the maximum degree. The results show that the dead time of the photon-counting system in Licel transient recorder TR40-160 is approximately 3.402 ns, which is estimated by using the photon-counting data in the application of long-range scanning lidar. The pile-up effect in the presented photon-counting data is improved obviously.
参考文献

[1] 刘豪, 舒嵘, 洪光烈, 等. 连续波差分吸收激光雷达测量大气CO2[J]. 物理学报, 2014, 63(10): 104214.

    Liu Hao, Shu Rong, Hong Guanglie, et al.. Continuous-wave modulation differentia absorption lidar system for CO2 measurement[J]. Acta Physica Sinica, 2014, 63(10): 104214.

[2] 华灯鑫, 宋小全. 先进激光雷达探测技术研究进展[J]. 红外与激光工程, 2008, 37(S3): 21-27.

    Hua Dengxin, Song Xiaoquan. Advances in lidar remote sensing techniques[J]. Infrared and Laser Engineering, 2008, 37(S3): 21-27.

[3] Huang Z, Huang J, Bi J, et al.. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment[J]. Journal of Geophysical Research, 2010, 115(D7): D00K15.

[4] Wang X, Huang J P, Zhang R D, et al.. Surface measurement of aerosol properties over northwest China during ARM China 2008 deployment[J]. Journal of Geophysical Research, 2010,115(D7): D00K27.

[5] 李俊, 龚威, 毛飞跃, 等. 探测武汉上空大气气溶胶的双视场激光雷达[J]. 光学学报, 2013, 33(12): 1201001.

    Li Jun, Gong Wei, Mao Feiyue, et al.. Dual field of view lidar for observing atmospheric aerosols over Wuhan [J]. Acta Optica Sinica, 2013, 33(12): 1201001.

[6] Hamamatsu Photonics K. Photon counting: Using photomultiplier tubes[OL]. [2016-03-01]. https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE-Chapter6.pdf.

[7] Licel GmbH. TR20-160 lidar transient recorder[OL]. [2016-03-01]. http://www.licel.com/manuals/TRInstallation.pdf.

[8] Gao F, Song X Q, Wang Y F, et al.. Ultraviolet Raman lidar for high-accuracy profiling of aerosol extinction coefficient [J]. Chinese Optics Letters, 2009, 7(2): 95-97.

[9] Imaki M, Takegoshi Y, Kobayashi T. Ultraviolet high-spectral-resolution lidar with Fabry-Perot filter for accurate measurement of extinction and lidar ratio[J]. Japanese Journal of Applied Physics, 2005,44(5A):3063-3067.

[10] 付毅宾, 王煜, 张天舒, 等. 模拟与光子计数融合的激光雷达信号采集系统设计[J]. 中国激光, 2015, 42(8): 0814001.

    Fu Yibin, Wang Yu, Zhang Tianshu, et al.. Signal acquisition system with simultaneous analog and photon counting measurement for lidar[J]. Chinese J Lasers, 2015, 42(8): 0814001.

[11] Wu Y H, Hu H L, Hu S X, et al.. Raman lidar measurements of tropospheric water vapor over Hefei[J]. Chinese Optics Letters, 2003, 1(7): 373-376.

[12] 张薇, 吴松华, 宋小全, 等. 夫琅禾费暗线激光雷达探测青岛市郊大气边界层[J]. 光学学报, 2013, 33(6): 0628002.

    Zhang Wei, Wu Songhua, Song Xiaoquan, et al.. Atmospheric boundary layer detected by Fraunhofer lidar over Qingdao suburb [J]. Acta Optica Sinica, 2013, 33(6): 0628002.

[13] Lü H F, Yi F. Gravity wave characteristics observed by lidar and radiosonde in Wuhan[J]. Chinese Journal of Geophysics, 2006, 49(6): 1436-1441.

[14] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211-220.

[15] Fernald F G. Analysis of atmospheric lidar observations: Some comments[J]. Applied Optics, 1984, 23(5): 652-653.

[16] Müller J W. Dead time problems[J]. Nuclear Instrument Methods, 1973, 112(S1-2): 45-57.

[17] Donovan D P,Whiteway J A, Carswell A I. Correction for nonlinear photon-counting effects in lidar systems[J]. Applied Optics, 1993, 32(33): 6742-6753.

[18] Newsom R K, Turner D D, Mielke B, et al.. Simultaneous analog and photon counting detection for Raman lidar[J].Applied Optics, 2009, 48(20): 3903-3914.

[19] Liu Z S, Li Z G, Liu B Y, et al.. Analysis of saturation signal correction of the troposphere lidar[J]. Chinese Optics Letters, 2009, 7(11): 1051-1054.

[20] Gao F, Bergant K, Filipi A, et al.. Observations of the atmospheric boundary layer across the land-sea transition zone using a scanning Mie lidar[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112(2): 182-188.

[21] Liu Z Y, Hunt W, Vaughan M, et al.. Estimating random errors due to shot noise in back scatter lidar observations[J]. Applied Optics, 2006, 45(18): 4437-4447.

[22] Gao F, Veberi D, Stanic S, et al.. Performance improvement of long-range scanning Mie lidar for the retrieval of atmospheric extinction[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 122(122): 72-78.

[23] Gerrard A J, Kane T J, Thayer J P, et al.. Consideration of non-Poisson distributions for lidar applications[J]. Applied Optics, 2001,40(9): 1488-1492.

[24] Volkov S N, Kaul B V, Shelefontuk D I. Optimal method of linear regression in laser remote sensing[J]. Applied Optics, 2002,41(24):5078-5083.

[25] Mielke B. Analog + photon counting[OL]. [2016-03-03]. https://www.researchgate.net/publication/265226203.

高飞, 李松辉, 李婉婉, 汪丽, 辛文辉, 华灯鑫*. 空间方差构建在激光雷达光子计数数据堆栈修正中的应用[J]. 光学学报, 2016, 36(5): 0528002. Gao Fei, Li Songhui, Li Wanwan, Wang Li, Xin Wenhui, Hua Dengxin. Application of Spatial Variance Construction in Correction of Pile-Up Effects of Lidar Photon-Counting Data[J]. Acta Optica Sinica, 2016, 36(5): 0528002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!