中国激光, 2014, 41 (9): 0906001, 网络出版: 2014-08-15   

采用显微荧光法研究掺钕磷酸盐激光玻璃的亚表面缺陷

Using Fluorescent Microscopy Method to Study Subsurface Defects in Nd-Doped Phosphate Laser Glasses
作者单位
1 中国科学院上海光学精密机械研究所高功率激光单元研发中心, 上海 201800
2 中国科学院大学, 北京 100049
摘要
针对具有多波段强吸收和发光特点的N31和N41型掺钕磷酸盐激光玻璃,选取罗丹明6G(R6G)作为荧光标记物,它的激发和发光分别避开了钕离子吸收和发光,在宽场显微镜下实现了对磷酸盐玻璃亚表面缺陷(SSD)的高灵敏度二维观测。与光学显微观测的结果对比,证明所观测到的缺陷属于亚表面缺陷。根据R6G显微荧光观测的结果,分析了亚表面裂纹在抛光过程中的演变情况。结果表明在磷酸盐玻璃中比较难去除的亚表面缺陷是处于缺陷层中位置较深的Median型裂纹末端的月牙形缺陷。它们可能对入射光场具有较强的调制,引发表面激光损伤的可能性相对较大。
Abstract
For N31 and N41 Nd-doped phosphate glasses with strong multiband absorption and emission, Rhodamine 6G (R6G) is chosen as the fluorescence label to realize high resolution two dimensional observation of subsurface defects (SSD) in these glasses under wide field microscopy, as the excitation and emission bands of R6G are different from the emission and excitation bands of Nd-doped phosphate laser glass respectively. It is demonstrated that the detected defects are classified as SSD by comparing the R6G fluorescence microscopy images and related optical microscopy images. The transformation of SSD during polishing process is analyzed according to related R6G fluorescence microscopy detection results. The results show that the crescent cracks which are near the tail end of deep Median type cracks are comparatively hard to be removed in the Nd-doped phosphate glass. These crescent cracks may induce strong modification to the incident optical field, and relatively increase the probability of laser induced surface damage.
参考文献

[1] H Peng, X F Zhang, X Wei, et al.. Design of 60-kJ SG-III laser facility and related technology development[C]. SPIE, 2001, 4424: 98-103.

[2] E Moses, G Miller, C Wuest. The national ignition facility: Enabling fusion ignition for the 21st century[J]. Nuclear Fusion, 2004, 44(2): 228-238.

[3] M L Andre. Status of the LMJ project[C]. SPIE, 1997, 3047: 38-42.

[4] H Liu, J Huang, F Wang, et al.. Subsurface defects of fused silica optics and laser induced damage at 351 nm[J]. Opt Express, 2013, 21(10): 12204-12217.

[5] B Mullany, M Mainuddin. The influence of process vibrations on precision polishing metrics[J]. CIRP Annals-Manufacturing Technology, 2012, 61(1): 555-558.

[6] Y Zhou, P D Funkenbusch, D J Quesnel, et al.. Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses[J]. Journal of the American Ceramic Society, 1994, 77(12): 3277-3280.

[7] X Tonnellier, P Morantz, P Shore, et al.. Subsurface damage in precision ground ULE and Zerodur surfaces[J]. Opt Express, 2007, 15(19): 12197-12205.

[8] X Tonnellier, P Shore, X Luo, et al.. Wheel wear and surface/subsurface qualities when precision grinding optical materials[C]. SPIE, 2006, 6273: 627308.

[9] X Sun, D Stephenson, O Ohnishi, et al.. An investigation into parallel and cross grinding of BK7 glass[J]. Precision Engineering, 2006, 30(2): 145-153.

[10] S Li, Z Wang, Y Wu. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes[J]. Journal of Materials Processing Technology, 2008, 205(1): 34-41.

[11] J A Menapace, P J Davis, W A Steele, et al.. MRF applications: Measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique[C]. SPIE, 2005, 5991: 599103.

[12] P Kumar, J Lee, G Lee, et al.. Low temperature wet etching to reveal sub-surface damage in sapphire substrates[J]. Applied Surface Science, 2013, 273(1): 58-61.

[13] L Wong, T Suratwala, M Feit, et al.. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica[J]. Journal of Non-Crystalline Solids, 2009, 355(13): 797-810.

[14] J Neauport, C Ambard, P Cormont, et al.. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J]. Opt Express, 2009, 17(22): 20448-20456.

[15] T A Germer, C C Asmail. Polarization of light scattered by microrough surfaces and subsurface defects[J]. JOSA A, 1999, 16(6): 1326-1332.

[16] 许谊, 徐毓娴, 惠梅, 等. 微分相衬干涉显微镜定量测量表面形貌[J]. 光学 精密工程, 2001, 9(3): 226-229.

    Xu Yi, Xu Yuxian, Hui Mei, et al.. Quantitative surface topography determination by differential interference contrast microscopy[J]. Optics and Precision Enginering, 2001, 9(3): 226-229.

[17] 邓燕, 许乔, 柴立群, 等. 光学元件亚表面缺陷的全内反射显微检测[J]. 强激光与粒子束, 2009, 21(6): 835-840.

    Deng Yan, Xu Qiao, Chai Liqun, et al.. Total internal reflection microscopy: A subsurface defects identification technique in optically transparent components[J]. High Power Laser and Particle Beams, 2009, 21(6): 835-840.

[18] 许鹏, 何红, 丁志华. 光学相干层析应用于玉石亚表面结构的研究[J]. 中国激光, 2011, 38(5): 0508004.

    Xu Peng, He Hong, Ding Zhihua. Research in subsurface morphologies of jades with optic coherence tomography[J]. Chinese J Lasers, 2011, 38(5): 0508004.

[19] 杨立峰, 王亚非. 激光在超声检测技术中的应用[J]. 激光与光电子学进展, 2006, 43(2): 29-32.

    Yang Lifeng, Wang Yafei. Application of laser in the ultrasonic detection technique[J]. Laser & Optoelectronics Progress, 2006, 43(2): 29-32.

[20] 程玉华. 探测亚表面缺陷的磁光显微成像检测技术研究[D]. 成都: 四川大学, 2007. 1-9.

    Chen Yuhua. Research on the Visual Detetion of Subsurface Defects Using Magneto-Optic Microscopy[D]. Chengdu: Sichuan University, 2007. 1-9.

[21] 马彬, 沈正祥, 张众, 等. 低亚表面损伤石英光学基底的加工和检测技术[J]. 强激光与粒子束, 2010, 22(9): 2181-2185.

    Ma Bin, Shen Zhengxiang, Zhang Zhong, et al.. Fabrication and detection technique of fused silica substrate with extremely low subsurface damage[J]. High Power Laser and Particle Beams, 2010, 22(9): 2181-2185.

[22] J Neauport, P Cormont, P Legros, et al.. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy[J]. Opt Express, 2009, 17(5): 3543-3554.

[23] W B Williams, B A Mullany, W C Parker, et al.. Using quantum dots to tag subsurface damage in lapped and polished glass samples[J]. Appl Opt, 2009, 48(27): 5155-5163.

[24] J H Wang, J Bartlett, A Dunn, et al.. The use of Rhodamine 6G and fluorescence microscopy in the evaluation of phospholipid-based polymeric biomaterials[J]. Journal of Microscopy, 2005, 217(3): 216-224.

[25] A Penzkofer, W Leupacher. Fluorescence behaviour of highly concentrated Rhodamine 6G solutions[J]. Journal of Luminescence, 1987, 37(2): 61-72.

[26] K Jukeviius, R Buzelis, S Kias, et al.. Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates[C]. SPIE, 2013, 8885: 888529.

[27] D W Camp, M R Kozlowski, L M Sheehan, et al.. Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces[C]. SPIE, 1997, 3244: 350-364.

[28] B Lawn, R Wilshaw. Indentation fracture: Principles and applications[J]. Journal of Materials Science, 1975, 10(6): 1049-1081.

[29] S He, R Gunda, R Singh. Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness[J]. Journal of Sound and Vibration, 2007, 301(3): 927-949.

[30] 张磊. 与表面损伤有关的光学玻璃表面缺陷的时域有限差分分析[D]. 上海: 上海精密光学研究所, 2012. 27-33.

    Zhang Lei . FDTD Analysis of Surface Defects Related to Laser-Induced Damage on Optical Glass Surfaces[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, 2012. 27-33.

王威, 张磊, 冯素雅, 陈伟, 胡丽丽. 采用显微荧光法研究掺钕磷酸盐激光玻璃的亚表面缺陷[J]. 中国激光, 2014, 41(9): 0906001. Wang Wei, Zhang Lei, Feng Suya, Chen Wei, Hu Lili. Using Fluorescent Microscopy Method to Study Subsurface Defects in Nd-Doped Phosphate Laser Glasses[J]. Chinese Journal of Lasers, 2014, 41(9): 0906001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!