光学 精密工程, 2014, 22 (6): 1403, 网络出版: 2014-06-30   

光镊系统随机漂移建模和误差补偿

Modeling and compensation of random drift error for optical tweezer system
作者单位
1 中国科学技术大学 光学与光学工程系,安徽 合肥 230026
2 中国科学技术大学 精密机械与精密仪器系,安徽 合肥 230026
摘要
针对光镊系统本身噪声对测量精度的影响, 提出了一种光镊系统随机漂移误差的有效补偿方法。首先, 介绍了时间序列分析法和卡尔曼滤波技术, 基于时间序列分析法建立了光镊的随机漂移误差模型; 然后, 用基于时间序列模型的卡尔曼滤波方法来减小该漂移误差。采用提出的方法对光镊设备实测数据的误差进行了补偿, 结果表明: 数据的误差方差由补偿前的188.90 nm2减小为8.41 nm2。计算补偿前后的艾伦方差可知, 系统在平均时间为1 s时可使最小位移误差从 0.7 nm降低到0.1 nm。得到的结果显示: 提出的滤波方法有效地抑制了光镊系统的漂移误差,将其用于双光镊对准可提高捕获光和探测光的对准精度, 进而提高光镊系统的性能指标。
Abstract
In consideration of the effect of noise in an optical tweezer on its measuring accuracy, an effective compensation method for the random drift error of the optical tweezer was proposed. Firstly, the time series analysis and Kalman filter methods were introduced. Then the random drift error of the tweezer was modeled by time series analysis method and the Kalman filter was proposed to decrease this drift error. The testing error from an optical tweezer test setup was compensated. The compensating result shows that the error variance is reduced from 188.90 nm2 to 8.41 nm2. The data analysis with the Allan variance method demonstrates that the minimum error is reduced from 0.7 nm to 0.1 nm for an averaging time of 1 s. The experiment shows that the method mentioned above can effectively compensate the random drift error of the optical tweezer. It can be used in aligning the double optical tweezers and can improve the accuracy of initial alignment for a capturing light and a detecting light in the double optical tweezer and can enhance the equipment performance.
参考文献

[1] ZHONG M C,WEI X B, ZHOU J H, et al.. Trapping red blood cells in living animals using optical tweezers[J]. Nat. Commun.,2013, 4:1768.

[2] JAUFFRED L,RICHARDSON A C,ODDERSHEDE L B. Three-dimensional optical control of individual quantum dots[J]. Nano Letters,2008,8(10):3376-3380.

[3] CARTER A R,SELO Y,PERKINS T T. Precision surface-coupled optical-trapping assay with one-basepair resolution[J]. Biophysical Journal,2009, 96(7):2926-2934.

[4] MOFFITT J R,CHEMLA Y R,IZHAKY D, et al.. Differential detection of dual traps improves the spatial resolution of optical tweezers[J]. Proceedings of the National Academy of Sciences of the United States of America,2006, 103(24):9006-9011.

[5] NUENT-GLANDORF L,PERKINS T T. Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection[J]. Optics Letters,2004, 29(22): 2611-2613.

[6] KLEIN M,ANDERSSON M,AXNER O, et al.. Dual-trap technique for reduction of low-frequency noise in force measuring optical tweezers[J]. Applied Optics,2007, 46(3): 405-412.

[7] ANDERSSON M,FLLMAN E,UHLIN B E, et al.. Force measuring optical tweezers system for long time measurements of P pili stability [J]. SPIE,2006, 6088: 8810-8810.

[8] ANDERSSON M,CZERWINSKI F,ODDERSHEDE L B. Optimizing active and passive calibration of optical tweezers[J]. J. Opt-Uk, 2011, 13(4):044020.

[9] 王自强,李银妹,楼立人,等. BP神经网络用于光镊力的非线性修正研究[J]. 光学精密工程,2008, 16(1): 6-10.

    WANG Z Q, LI Y M, LOU L R, et al.. Application of BP neural network to nonlinearity correction of optical tweezers force[J].  Opt. Precision Eng.,2008, 16(1): 6-10. (in Chinese)

[10] CZERWINSKI F,RICHARDSON A C,LENE B. Quantifying noise in optical tweezers by Allan variance[J]. Optics Express,2009, 17(15):13255-13269.

[11] 张立新,黄晋英. 基于卡尔曼滤波的微压电陀螺的误差补偿[J]. 机械工程与自动化,2011, 168(5):134-136.

    ZHANG L X, HUANG J Y. Electric gyro error compensation based on Kalman filter[J]. Mechanical Englineering & Automation, 2011, 168(5): 134-136. (in Chinese)

[12] 魏彤,郭蕊. 自适应卡尔曼滤波在无刷直流电机系统辨识中的应用[J]. 光学 精密工程,2012, 20(10):2308-2314.

    WEI T, GUO R. Application of adaptive Kalman filtering in system identification of brushless DC motor [J]. Opt. Precision Eng.,2012, 20(10): 2308-2314. (in Chinese)

[13] POLLOCK D S G,GREEN R C,NGUYEN T. Handbook of Time Series Analysis, Signal Processing, and Dynamics[M]. London:Academic Press, 1999.

[14] 李家垒,许化龙,何婧. 光纤陀螺随机漂移的实时滤波方法研究[J]. 宇航学报,2011, 31(12):2717-2721.

    LI J L,XU H L,HE J. Real time filtering methods of random drift of fiber optic gyroscope[J]. Journal of Astronautics,2011,31(12):2717-2721.(in Chinese)

[15] 汤霞清,宗艳桃,郭理彬, 等. 光纤陀螺随机漂移的AR-MA模型[J]. 装甲兵工程学院学报,2008, 22(3): 50-53.

    TANG X Q, ZONG Y T,GUO L B, et al.. ARMA model of random drift of fiber optic gyro[J]. Journal of Academy of Armored Force Engineering,2008, 22(3):50-53.(in Chinese)

[16] 王新龙,陈涛,杜宇. 基于ARMA模型的光纤陀螺漂移数据建模方法研究[J]. 弹箭与制导学报,2006, 26(1): 5-7.

    WANG X L,CHEG T,DU Y. The drift method of fiber optic gyros based on the ARMA model[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2006, 26(1):5-7.(in Chinese)

[17] 武丽花,凌林本. 三浮陀螺仪漂移模型的建立及MATLAB实现[J]. 中国惯性技术学报,2005, 12(6): 75-78.

    WU L H,LIN L B. Modeling of gyro drift and realizing in MATLAB[J]. Journal of Chinese Inertial Technology, 2005, 12(6):75-78.(in Chinese)

[18] GIBSON G M, LEACH J, KEEN S, et al.. Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy[J]. Optics Express,2008, 16(19):14561-14570.

[19] CZERWINSKI F, RICHARDSON A C, SELHUBER-UNKEL C, et al.. Quantifying and pinpointing sources of noise in optical tweezers experiments[J]. SPIE,2009, 7400: 740004.

[20] SMTIH S B, CUI Y J,BUSTAMANTE C.Optical-trap force transducer that operates by direct measurement of light momentum[J]. Biophotonics Pt. B,2003, 361:134-162.

[21] NUGENT-GLANDORF L, PERKINS T T.Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection[J].Optics Letters,2004,29(22):2611-2613.

王自强, 钟敏成, 周金华, 孔凡让, 李银妹. 光镊系统随机漂移建模和误差补偿[J]. 光学 精密工程, 2014, 22(6): 1403. WANG Zi-qiang, ZHONG Min-cheng, ZHOU Jin-hua, KONG Fan-rang, LI Yin-mei. Modeling and compensation of random drift error for optical tweezer system[J]. Optics and Precision Engineering, 2014, 22(6): 1403.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!