Author Affiliations
Abstract
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
The defect-free neutral atom array has emerged as an ideal platform to investigate complex many-body physics of interacting quantum particles, offering the opportunities for quantum simulation and quantum-enhanced metrology. To fast build a large-scale quantum system, we design a sorting-atom algorithm with maximum parallelisms. Compared with previous protocols, our method saves the rearrangement time by sorting row-by-row and is also universal to arbitrary periodic patterns with no need to change the hardware. We present the generation of a defect-free square and other periodic geometries and demonstrate the potential to scale up a defect-free array to 2500 atoms with only about 180 steps of rearrangement.
optical tweezer defect-free atomic array 
Chinese Optics Letters
2023, 21(11): 110010
作者单位
摘要
1 山西大学 光电研究所 量子光学与光量子器件国家重点实验室,山西 太原 030006
2 山西大学 极端光学协同创新中心,山西 太原 030006

由于TeO2声光偏转器(Acousto-optic deflector, AOD)具有超快的扫描速度、较宽的布拉格带宽以及大范围的偏转角度等优点,可以及时地改变光镊的位置,因此是获得无缺陷原子阵列的重要工具,在量子计算与模拟中具有重要的作用。但是,当声光偏转器输入含有多频率成分的信号时,会出现频率之间相互调制,导致衍射效率降低,出现不需要的衍射光且得到的衍射光强度分布不均匀等问题。基于此,对多个频率之间的相互调制过程进行了分析,通过对模型的计算分析得到了抑制频率互调的相位条件,并通过实验进行验证,再进行强度优化后得到强度分布相对均匀的光镊阵列。之后对互调过程进行仿真模拟,仿真结果显示与实验测量结果基本符合。对光镊阵列的参数测试显示,聚焦光镊的腰斑为1.5 μm,现有实验光路可获得间距3 μm的22×22的光镊阵列,满足中性原子阵列的实验需求。

光镊阵列 声光偏转器 频率互调 中性原子阵列 optical tweezer array acousto-optic deflector frequency intermodulation neutral atom array 
红外与激光工程
2023, 52(7): 20230128
陶也 1钟伟 1吴欣怡 1何涛 1,2,3,4[ ... ]程鑫彬 1,2,3,4,**
作者单位
摘要
1 同济大学物理科学与工程学院,同济大学精密光学工程技术研究所,上海 200092
2 先进微结构材料教育部重点实验室,上海 200092
3 上海市数字光学前沿科学研究基地,上海 200092
4 上海市全光谱高性能光学薄膜器件与应用专业技术服务平台,上海 200092
光镊技术通过在细小物体上施加光力对物体进行操控,而伴随光力产生的光力矩同样广泛存在于光学操控中。光力矩与光力一样,具有无接触、操控尺寸小、精度高等特点,在生物医学、物理学和量子科学等领域被广泛应用。光力矩根据其与施加光场偏振旋向的关系可分为正光力矩和负光力矩。从正负光力矩产生的原理和条件、光力矩的增强、光力矩的物理和生物应用出发,对光力矩光镊操控进行回顾和讨论,最后对光力矩光镊操控潜在的挑战进行了总结,对其未来的发展方向如微型扭矩测量、光驱动生物机器人等进行了展望。
光力矩 光镊 光流控 多功能操控 生物颗粒 
光学学报
2023, 43(16): 1623012
作者单位
摘要
1 东北石油大学电气信息工程学院,黑龙江 大庆 163318
2 大庆油田信息技术公司,黑龙江 大庆 163453
提出一种基于电流调制的新型单光纤光镊。通过将经电流调制的980 nm激光注入单模光纤,光纤探头的输出功率发生周期性变化,实现了对粒子运动距离和运动速度的可控式操纵。此外,通过调整盖玻片的倾斜角度改变溶液蒸发力的大小,实现了对粒子的稳定捕获。在构建平面锥形纤维探针的基础上,搭建仿真模型,分析粒子的受力情况,并进行实验验证。实验结果表明,通过对激光器的驱动电流进行调制,可以操纵聚苯乙烯小球实现长达22.76 μm的粒子运输,且粒子的运动速度与激光器的调制电流有关,实验结果得到了数值模拟的支持。所提方法使得粒子捕获点的可变式调节和粒子的长距离轴向可控式运输成为可能。
光纤光镊 电流调制 粒子捕获与操纵 生物传感 
光学学报
2023, 43(14): 1406003
作者单位
摘要

光镊技术利用光与颗粒之间动量传递的力学效应对颗粒进行操控,具有无接触、操控尺寸小等优点,在生物医学和物理化学等领域具有重要的应用价值。光镊操控起初主要是在静态环境中对单个和多个颗粒进行操控,分为单/多光束光镊、全息光镊、等离子光镊、光纤光镊、特殊光力/力矩光镊和光电热镊子等。光镊技术随后与微流控技术进行结合诞生了光流控光镊操控技术,大大提高了可操控颗粒的数量和效率,同时也丰富了操控功能。本文从光流控光镊类别、物理机制以及生物医学应用等方面出发,对光流控光镊操控进行了回顾和讨论,最后对光流控光镊操控潜在的挑战进行了总结,对未来的发展方向如高通量单病毒操控和检测、光驱动机器人等进行了展望。

光学 精密工程
2022, 30(21): 2765
作者单位
摘要
北京理工大学化学与化工学院, 北京 100081
硫酸盐是大气雾霾颗粒中一种重要的二次无机组分, 但是有关大气硫酸盐生成机制的认识, 目前还存在很多不足。同时, 现有的空气质量模型也往往存在对硫酸盐生成量的低估问题, 无法有效复现外场观测结果。因此, 深入研究大气硫酸盐的生成机制, 对理解雾霾成因、实现大气污染的精准防控具有重要意义。本研究利用光镊-受激拉曼光谱技术观测了SO2与NaCl液滴的非催化氧化反应过程, 液滴半径在反应过程中的纳米级变化可被精确测量, 实现了反应过程的实时、原位观测。根据测定的反应速率, 求算了SO2氧化过程的拟一级反应速率常数k, 同时研究了相对湿度、SO2浓度对反应的影响。结果表明, 相对湿度变化引起的液滴离子强度变化对k值具有显著影响, 湿度由~60%增加至~90%时, k值下降约1个数量级。而SO2浓度提升会使得液滴pH减小, 导致k略微下降。对反应过程的机制讨论表明, SO2在NaCl液滴中的非催化氧化过程体相反应、界面反应可能均有贡献。
光镊 NaCl液滴 硫酸盐 非催化氧化 Optical tweezer, SO2, NaCl droplet, sulfate, non-c SO2 
光散射学报
2022, 34(1): 46
作者单位
摘要
1 长春理工大学 光电工程学院 高功率半导体激光国家重点实验室, 吉林长春30022
2 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林长春130033
本文通过一种产生多局域空心光阱的光学系统,研究了光阱位置与反射镜偏转角度的关系。基于衍射积分和矩阵光学的理论,分析并计算了入射光源经过光学元件后的光场分布,通过调控反射镜的偏转角度,可以实现光阱位置的任意变换,达到精确捕获和囚禁微粒的目的。当两个反射镜偏转角度的关系为θ1-θ2=90°时,变换的光阱位置在一条倾斜的直线上;当两个反射镜的偏转角度关系为θ1<112.5°和θ2<22.5°时,空心四阱可转变为空心十二阱。对所形成的光阱进行了梯度力和散射力的计算,通过蒙特卡罗法验证了瑞利粒子被稳定地囚禁在光阱中心的极小区域内。多局域空心光阱对于多粒子的捕获和精确捕捉具有重要意义。
光镊 激光技术 多局域空心光束 反射镜 位置变换 粒子囚禁 optical tweezer laser technique multi-bottle beam reflector position transformation particle trapping 
光学 精密工程
2021, 29(2): 251
作者单位
摘要
1 南开大学电子信息与光学工程学院现代光学研究所, 天津市微尺度光学信息技术科学重点实验室, 天津 300350
2 天津大学精密仪器与光电子工程学院精密测试技术及仪器国家重点实验室, 天津 300072
表面增强拉曼散射(SERS)是一种能够在低浓度(体积分数)下精确检测物质成分的光谱学技术。当采用金属纳米结构时,其局域表面等离激元共振(LSPR)导致的电磁场增强能够实现SERS增强。近年来,各种LSPR金属纳米结构被用于SERS研究,如纳米天线、纳米孔、纳米槽等。但这些结构一旦被加工完成后将不可改变,进而无法满足拉曼检测对灵活性的需求,而光镊能够解决这一问题。提出一种采用光力捕获金纳米立方体,并利用光热对流进一步促成金纳米立方体聚集的方法,实现了对低浓度(10 -12 mol/L)下拉曼分子信号的显著增强和探测,并且其增强效果优于金纳米球。与传统的SERS相比,所提方法具有实时操作、动态操作和原位操作的优势,在生物细胞探测、物质成分与结构分析、分子传感等重要领域具有潜在的应用价值。
光谱学 光镊 拉曼光谱 表面等离激元 纳米颗粒 
光学学报
2021, 41(17): 1730003
作者单位
摘要
北京大学信息科学技术学院电子学系纳米器件物理与化学教育部重点实验室, 北京 100871
大气气溶胶粒子的热动力学过程主要源于多元物质的非理想混合, 其演化过程包括液-液相分离、吸湿-挥发、非平衡传质等。相关物理化学参数是理解气溶胶演化过程、分析演化动因、预测演化路径的基础, 而精确的单粒子测量是获取这些重要参数的关键。利用自主开发的气溶胶拉曼光镊系统, 实现了单颗粒气溶胶液滴无接触长时间捕获, 并通过改变气溶胶粒子所处环境的相对湿度, 模拟了实际大气中悬浮气溶胶液滴的吸湿-挥发热力学演化过程。通过测量单颗粒液滴粒子的腔共振拉曼光谱信号, 结合相应的物理模型精确测量了氯化钠、蔗糖和柠檬酸三种不同气溶胶液滴粒子在吸湿-挥发过程中的粒径、折射率、扩散系数、挥发通量等重要物化参数, 分析了有机/无机气溶胶液滴的吸湿-挥发特性对相对湿度变化的不同响应以及气溶胶液滴可能存在的玻璃态、胶态等相变行为, 为理解实际大气气溶胶吸湿-挥发过程提供了重要参考。
气溶胶液滴 吸湿性 挥发性 拉曼光镊 aerosol droplet hygroscopicity volatility Raman optical tweezer 
大气与环境光学学报
2020, 15(6): 486
作者单位
摘要
1 西安交通大学理学院,陕西省量子信息与光电量子器件重点实验室, 陕西 西安 710049
2 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
作为一种非侵入式的高精度微操控和力传感工具,光镊已被广泛应用于生命科学领域的研究。全息光镊利用空间光调制器调控光场,可以灵活地产生任意排布的光阱阵列,具有比传统单光镊更高的灵活性,目前已在生物医学领域展现出巨大的应用价值。本文综述了全息光镊的基本原理、全息图算法,以及全息光镊在生物学领域的研究进展,希望可以为全息光镊在生物学中的应用研究提供一定的参考。
生物光学 光镊 空间光调制器 
中国激光
2020, 47(2): 0207020

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!