光学学报, 2020, 40 (7): 0730001, 网络出版: 2020-04-15   

遥测LIBS系统中样品位置波动对光谱特征参数的影响 下载: 854次

Influence of Sample Position Fluctuation on Spectral Characteristic Parameters in Telemetry LIBS System
作者单位
1 安徽大学电气工程与自动化学院, 安徽 合肥 230601
2 安徽大学电子信息工程学院计算智能与信号处理教育部重点实验室, 安徽 合肥 230601
3 安徽创谱仪器科技有限公司, 安徽,合肥 230088
引用该论文

苏亚辉, 王广谦, 潘从元, 沈川. 遥测LIBS系统中样品位置波动对光谱特征参数的影响[J]. 光学学报, 2020, 40(7): 0730001.

Yahui Su, Guangqian Wang, Congyuan Pan, Chuan Shen. Influence of Sample Position Fluctuation on Spectral Characteristic Parameters in Telemetry LIBS System[J]. Acta Optica Sinica, 2020, 40(7): 0730001.

参考文献

[1] Zeng Q, Pan C Y, Li C Y, et al. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 142: 68-73.

[2] Lednev V N, Sdvizhenskii P A, Grishin M Y, et al. Laser-induced breakdown spectroscopy for three-dimensional elemental mapping of composite materials synthesized by additive technologies[J]. Applied Optics, 2017, 56(35): 9698-9705.

[3] 修俊山, 刘世明, 王琨琨, 等. 基于激光诱导击穿光谱技术的铜铟镓硒纳米薄膜的分析探测研究[J]. 中国激光, 2018, 45(12): 1211002.

    Xiu J S, Liu S M, Wang K K, et al. Analytical investigation of Cu(In, Ga)Se2 thin films using laser induced breakdown spectroscopy technology[J]. Chinese Journal of Lasers, 2018, 45(12): 286-292.

[4] Hudson S W. Craparo J, de Saro R, et al. Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing[J]. Metallurgical and Materials Transactions B, 2017, 48(5): 2731-2742.

[5] Han D, Joe Y J, Ryu J S, et al. Application of laser-induced breakdown spectroscopy to Arctic sediments in the Chukchi Sea[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 146: 84-92.

[6] 杨宇翔, 康娟, 王亚蕊, 等. 水中铅元素的激光诱导击穿光谱-激光诱导荧光超灵敏检测[J]. 光学学报, 2017, 37(11): 1130001.

    Yang Y X, Kang J, Wang Y R, et al. Supersensitive detection of lead in water by laser-induced breakdown spectroscopy combined with laser-induced fluorescence technique[J]. Acta Optica Sinica, 2017, 37(11): 1130001.

[7] Singh P, Mal E, Khare A, et al. A study of archaeological pottery of Northeast India using laser induced breakdown spectroscopy (LIBS)[J]. Journal of Cultural Heritage, 2018, 33: 71-82.

[8] Lazic V, Vadrucci M, Fantoni R, et al. Applications of laser-induced breakdown spectroscopy for cultural heritage: a comparison with X-ray fluorescence and particle induced X-ray emission techniques[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 149: 1-14.

[9] de Giacomo A, Dell’Aglio M, de Pascale O, et al. Laser induced breakdown spectroscopy methodology for the analysis of copper-based-alloys used in ancient artworks[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(5): 585-590.

[10] Jagdish PS, Surya NT. Laser-induced breakdown spectroscopy[M]. Oxford: Elsevier, 2013.

[11] Multari R A, Foster L E, Cremers D A, et al. Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 1996, 50(12): 1483-1499.

[12] 王静鸽, 陈兴龙, 付洪波, 等. 透镜到样品的距离对激光诱导等离子体的影响[J]. 光学学报, 2014, 34(9): 0930006.

    Wang J G, Chen X L, Fu H B, et al. Influence of lens-to-sample distance on laser-induced plasma[J]. Acta Optica Sinica, 2014, 34(9): 0930006.

[13] 林兆祥, 李捷, 陆继东, 等. 透镜到样品表面距离对LIBS测量的影响[J]. 华中科技大学学报(自然科学版), 2009, 37(4): 17-20.

    Lin Z X, Li J, Lu J D, et al. Influence of lens to samples distance on laser-induced breakdown spectroscopy measurement[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2009, 37(4): 17-20.

[14] Guo J, Shao J F, Wang T F, et al. Optimization of distances between the target surface and focal point on spatially confined laser-induced breakdown spectroscopy with a cylindrical cavity[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(2): 367-372.

[15] 杨雪, 李苏宇, 姜远飞, 等. 不同样品温度下聚焦透镜到样品表面距离对激光诱导铜击穿光谱的影响[J]. 物理学报, 2019, 68(6): 065201.

    Yang X, Li S Y, Jiang Y F, et al. Influence of distance between focusing lens and sample surface on laser-induced breakdown spectroscopy of brass at different sample temperatures[J]. Acta Physica Sinica, 2019, 68(6): 065201.

[16] 张丹. 焦点到样品表面距离对激光诱导击穿光谱的影响[D]. 长春: 吉林大学, 2019: 26- 27.

    ZhangD. Influence of distance between focal point and sample surface on laser-induced breakdown spectroscopy[D]. Changchun: Jilin University, 2019: 26- 27.

[17] 韩振宇, 潘从元, 安宁, 等. 自动聚焦激光诱导击穿光谱远程测量系统[J]. 光谱学与光谱分析, 2015, 35(2): 304-308.

    Han Z Y, Pan C Y, An N, et al. The auto-focusing remote laser-induced breakdown spectroscopy system[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 304-308.

[18] Bassiotis I, Diamantopoulou A, Giannoudakos A, et al. Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 671-683.

[19] Rodgers J L, Nicewander W A. Thirteen ways to look at the correlation coefficient[J]. The American Statistician, 1988, 42(1): 59-66.

[20] 赵法刚, 张宇, 张雷, 等. 基于自吸收量化的激光诱导等离子体表征方法[J]. 物理学报, 2018, 67(16): 165201.

    Zhao F G, Zhang Y, Zhang L, et al. Laser-induced plasma characterization using self-absorption quantification method[J]. Acta Physica Sinica, 2018, 67(16): 165201.

[21] 杨大鹏, 李苏宇, 姜远飞, 等. 飞秒激光成丝诱导Cu等离子体的温度和电子密度[J]. 物理学报, 2017, 66(11): 115201.

    Yang D P, Li S Y, Jiang Y F, et al. Temperature and electron density in femtosecond filament-induced Cu plasma[J]. Acta Physica Sinica, 2017, 66(11): 115201.

[22] Wang Q Y, Chen A M, Wang Y, et al. Spectral intensity clamping in linearly and circularly polarized femtosecond filament-induced Cu plasmas[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(7): 1154-1157.

[23] Chen A M, Jiang Y F, Wang T F, et al. Comparison of plasma temperature and electron density on nanosecond laser ablation of Cu and nano-Cu[J]. Physics of Plasmas, 2015, 22(3): 033301.

[24] NIST. Atomic spectradatabase[DB/OL]. ( 2019-10-01)[2019-10-07]. https:∥www.nist.gov/pml/atomic-spectra-database.

[25] Barthélemy O, Margot J, Chaker M, et al. Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(7/8): 905-914.

苏亚辉, 王广谦, 潘从元, 沈川. 遥测LIBS系统中样品位置波动对光谱特征参数的影响[J]. 光学学报, 2020, 40(7): 0730001. Yahui Su, Guangqian Wang, Congyuan Pan, Chuan Shen. Influence of Sample Position Fluctuation on Spectral Characteristic Parameters in Telemetry LIBS System[J]. Acta Optica Sinica, 2020, 40(7): 0730001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!