作者单位
摘要
1 安徽大学电气工程与自动化学院, 安徽 合肥 230601
2 安徽大学电子信息工程学院计算智能与信号处理教育部重点实验室, 安徽 合肥 230601
3 安徽创谱仪器科技有限公司, 安徽,合肥 230088
搭建了由共轴Schwarzschild望远镜组成的遥测LIBS系统,研究了不同导轨位置下样品距离波动时LIBS特征谱线光谱强度、相对标准偏差、光谱相似度和等离子体温度的变化情况,并结合物理机制分析了特征参数变化的原因。结果表明,样品位置波动对等离子体温度、特征谱线强度和相对标准偏差有显著影响,而光谱相似度则在一定范围内保持稳定;在光谱满足一定相似度的情况下,样品位置波动允差随样品距离的增加呈线性递增。当前系统聚焦范围为1.9~4.1 m时,在光谱相似度为0.99的情况下,样品位置波动允差的范围为70~220 mm。研究结果有利于高性能光学系统设计,并为光谱的定性和定量分析提供了理论参考。
光谱学 激光诱导击穿光谱 遥测 样品位置 光谱特征 相似度 
光学学报
2020, 40(7): 0730001
作者单位
摘要
1 中国科学技术大学 国家同步辐射实验室, 合肥 230029
2 安徽大学 电气工程与自动化学院, 合肥 230601
基于辐射度学理论搭建了用于激光诱导击穿光谱探测系统的绝对效率标定装置.用卤钨灯配备紫外玻璃滤光片和熔融石英漫射片作为标定的标准光源, 标定了配备Czerny-Turner型紫外波段光谱仪的激光诱导等离子体光谱探测系统.测得了系统在310~385 nm波长范围内的绝对光谱响应, 不确定度小于7%(在标准偏差为2的条件下).绝对效率标定可为激光诱导击穿光谱探测系统硬件评估提供一种手段.
激光诱导击穿光谱 绝对标定 卤钨灯 绝对光谱响应 Laser-induced breakdown spectroscopy Absolute calibration Tungsten halogen lamp Absolute spectral response 
光子学报
2018, 47(8): 0847003
作者单位
摘要
中国科学技术大学 国家同步辐射实验室, 合肥 230029
利用多光谱成像技术, 讨论了一种对书画图像进行扫描和分析的系统修复方法, 避免了传统化学、物理分析方法对书画造成不必要的损害。在计算机的辅助下对书画进行多光谱图像的采集、光谱反射率重建、光谱图像降维以及图像颜色重建等, 实现了书画颜色的高保真再现, 在颜色修复上提出了基于Kubelka-Munk理论的颜料重构方法, 为书画的修复提供技术上的支持。采用该方法不仅可降低修复过程中书画损坏的风险, 而且可提高修复质量。
多光谱成像 高保真 颜料重构 multispectral imaging high fidelity pigment matching 
半导体光电
2017, 38(3): 425
作者单位
摘要
1 中国科学技术大学国家同步辐射实验室, 安徽 合肥 230029
2 中国科学技术大学光学与光学工程系, 安徽 合肥 230026
在钢铁冶炼中, 成分含量检测是保证冶炼质量的关键之一, 激光诱导击穿光谱技术(LIBS)具有遥测的特点, 非常适合于炉内钢水成分的检测。 实验室搭建了一熔融合金LIBS检测实验系统, 该系统由 Nd:YAG调Q激光器(重复频率10 Hz, 波长1 064 nm, 脉冲宽度10 ns, 单脉冲能量约240 mJ), 高频感应电炉(温度1 600 ℃), 光谱仪(波长范围186~310 nm, 光谱分辨率0.1 nm), 激光聚焦和信号光收集系统组成。 实现了对钢液中多元素的LIBS光谱检测, 通过内标法建立了相应元素的定标曲线, 并给出了系统的检测限。 采用深紫外镀膜探测器的光谱仪和抗紫外曝光处理的光纤, 在大气环境下得到的C, S, Mn和Cr元素定标曲线的线性相关系数优于0.96, 检测限分别达到169, 15, 58.9和210 μg·g-1。 对比发现, 不同元素得到最佳定标曲线所需延时条件不同。
激光诱导击穿光谱技术 钢液 成分检测 Laser induced breakdown spectroscopy Molten steel Content detection 
光谱学与光谱分析
2016, 36(8): 2613
作者单位
摘要
1 中国科学技术大学国家同步辐射实验室, 安徽 合肥 230029
2 中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230027
3 中国科学技术大学光学与光学工程系, 安徽 合肥 230026
激光诱导击穿光谱(LIBS)技术具有非接触测量、无需样品预处理以及快速多元素同时分析等特点, 适合于高温、高压、真空、有毒以及敌对环境等仪器和操作人员无法靠近观测对象的应用中。LIBS技术结合望远镜系统可以实现物质成分的远距离检测与分析。搭建了一套可自动聚焦的LIBS远程测量系统。该系统中的望远镜采用Schwarzschild结构, 由一块凹球面反射镜和一块凸球面反射镜组成。两块球面反射镜共轴安装。其中凸面反射镜安装在电控精密平移台上, 电动平移台可带动凸面反射镜沿光轴移动。通过调整凸面反射镜的位置, 改变凸面反射镜和凹面反射镜的间距, 进而改变系统的焦距, 实现对不同距离的样品进行光谱测量。该结构的优点在于: 激光聚焦光路与信号光采集光路相同, 便于安装和调试;望远镜系统采用全反射式光路, 适用于紫外波段检测;只包括两个球面反射镜, 结构紧凑, 元件容易加工。望远镜系统调焦距离为1.5~3.6 m, 聚焦光斑直径约为0.5~1.0 mm。使用该系统对铜样品进行了LIBS实验, 确认了Cu元素的特征谱线。通过测量Cu元素的LIBS特征谱线(Cu Ⅰ 223.01 nm, Cu Ⅰ 224.43 nm)峰面积和反射镜间距之间关系, 得到了激光的最优聚焦位置。实验结果表明, 该系统能够完成样品的远程激发和LIBS光谱测量, 并能够对不同距离的样品进行自动聚焦。
激光诱导击穿光谱 远程 望远镜 自动聚焦 Laser-induced breakdown spectroscopy Remote measurement Telescope Auto-focusing 
光谱学与光谱分析
2015, 35(2): 304
作者单位
摘要
1 中国科学技术大学国家同步辐射实验室, 安徽 合肥 230029
2 中国科学技术大学光学与光学工程系, 安徽 合肥 230026
激光诱导击穿光谱(LIBS)是一种动态光谱。 时间分辨LIBS光谱测量是研究激光诱导等离子体演化和谱线自吸收的重要技术。 结合激光诱导击穿光谱测量的时序特性, 提出一种利用常规性能光谱探测设备获得微秒级时间分辨LIBS光谱的测量方法。 通过控制毫秒级光谱探测设备的积分延迟时间, 获得不同延时下的LIBS光谱信号, 对所得光谱进行处理得到相应特征谱线拟合强度, 将所测的特征谱线强度按照一定的时间间隔进行差分, 得到差值即为差分间隔时间内特征谱线的积分强度。 采用差分时间间隔应大于系统最差时序精度, 同时优选无重叠干扰和背底连续的谱线信号进行分析。 以等离子体产生后持续时间为横坐标, 计算所得谱线差值强度为纵坐标, 即可获得特征谱线的强度演化曲线。 通过实验验证, 使用积分时间为毫秒量级光谱仪和时序精度为0.021微秒控制系统, 该方法可以实现微秒量级时间分辨LIBS光谱测量, 可用于表征LIBS光谱特征谱线演化过程, 降低了LIBS光谱时间分辨测量系统成本。
激光诱导击穿光谱 时间分辨 方法 演化 Laser-induced breakdown spectroscopy Time-resolved Method Evolution 
光谱学与光谱分析
2014, 34(4): 865
作者单位
摘要
1 中国科学技术大学国家同步辐射实验室, 安徽 合肥 230029
2 中国科学技术大学光学与光学工程系, 安徽 合肥 230026
激光诱导击穿光谱(LIBS)技术是应用于冶金在线分析最具前景的技术之一。 为了研究真空和高温条件下LIBS光谱特性和物质成分定量分析方法, 设计并搭建了可实现真空环境高温熔融金属LIBS光谱测量的实验系统。 系统以调Q Nd:YAG脉冲激光器为光源, 采用不同焦距透镜实现激光聚焦和信号光采集, 并利用光谱仪进行光谱检测, 真空获取和高温加热通过真空泵和中频感应电炉实现, 感应加热线圈通过陶瓷封接引线法兰与真空系统进行整合。 经过安装测试, 搭建系统在未加热情况下真空度可达1×10-4Pa, 加热温度可达到1 600 ℃, 可实现真空环境下铁、 铝等金属加热或熔融, 并获得相应环境下的LIBS测量光谱。 利用该系统进行真空和熔融条件下标准钢样品的LIBS实验, 得到了固态钢样品LIBS光谱在不同真空度下的光谱对比, 以及真空环境熔融态和固态钢样品光谱对比。 通过对测得的LIBS光谱进行数据处理和理论分析, 所得初步实验结果与现有研究结论相符合, 表明该系统工作状况良好, 可满足真空环境下的熔融金属成分分析研究的基本需求。
激光诱导击穿光谱 系统 真空 高温 金属 Laser-induced breakdown spectroscopy Vacuum High-temperature Molten metal 
光谱学与光谱分析
2013, 33(12): 3388
作者单位
摘要
1 中国科学技术大学光学与光学工程系,安徽 合肥 230026
2 中国科学技术大学国家同步辐射实验室,安徽 合肥 230029
激光诱导等离子体光谱法作为一种新兴的元素成份分析方法近年受到广泛关注, 采用这种方法可以快速对物体进行元素成分的定量分析。在实验中用激光诱导等离子体光谱法 (LIPS) 来 测量碳钢中的碳含量。将Nd:YAG激光器发射的激光聚焦到样品表面产生等离子体,选择等离子体发射光谱中的193.09 nm碳 谱线进行分析。得到固态碳钢样品碳含量的定标曲线,检测限为460 ppm。这个结果说明LIPS方法可以用于钢铁中元素 成份的直接定量测量。
光谱学 激光诱导等离子体光谱 定量分析 定标曲线 碳钢 spectroscopy laser induced plasma spectroscopy quantitative analysis calibration curve carbon steel 
量子电子学报
2012, 29(2): 209

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!