郭慧君 1陈路 1,*杨辽 1沈川 1[ ... ]何力 1,2
作者单位
摘要
1 中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083
2 上海科技大学 信息科学与技术学院,上海 201210
单光子计数技术在弱信号探测和时间测距中具有重大的应用前景。自从20世纪70年代可见光的光子计数系统研发以来,国际上该领域内的研发小组在不断地发展完善光子计数技术,充分放大光子信号,以降低电子设备的读出噪声。电子倍增电荷耦合器件(Electron Multiplying Charge Coupled Devices, EMCCDs)具有更高的量子效率,可替代传统的可见光光子计数系统,但较大的雪崩噪声阻碍了倍增下入射光子数的准确获取。碲镉汞线性雪崩器件(HgCdTe APD)的过剩噪声因子接近1,几乎无过剩噪声;相对于盖革模式的雪崩器件,没有死时间和后脉冲,不需要淬灭电路,具有超高动态范围,光谱响应范围宽且可调,探测效率和误计数率可独立优化,开辟了红外波段光子计数成像的新应用领域,在天文探测、激光雷达、自由空间通信等应用中具有重要价值。美国雷神(Raytheon)公司和DRS技术公司、法国CEA/LETI实验室和Lynred公司、英国Leonardo公司先后实现了碲镉汞线性雪崩探测器的单光子计数。文中总结了欧美国家在碲镉汞光子计数型线性雪崩探测器研究方面的技术路线和研究现状,分析了吸收倍增分离型(Separation of Absorption and Magnification, SAM)、平面PIN型和高密度垂直集成型(High Density Vertically Integrated Photodiode, HDVIP)三种结构的HgCdTe APD器件性能、光子计数能力以及制备优缺点。雷神公司采用分子束外延(Molecular-Beam Epitaxy, MBE)方式制备了空穴倍增机制的SAM型短波HgCdTe APD器件,增益可达350,光子探测效率达95%以上,工作温度达180 K以上。DRS技术公司采用液相外延(Liquid Phase Epitaxy, LPE)碲镉汞材料制备了电子倍增机制的HDVIP型中波HgCdTe APD器件,在0.4~4.3 μm的可见光到中红外波段都能响应,最高增益可达6100,光子探测效率大于70%,可实现110 Mbps的自由空间通信。CEA/LETI实验室和Lynred公司采用分子束外延或液相外延制备了电子倍增机制的PIN型短波和中波HgCdTe APD器件,短波器件增益达2 000,中波最高增益可达13000,内光子探测效率达90%,实现了80 Mbps的自由空间通信,在300 K和增益为1时,带宽最高达10 GHz。英国Leonardo公司采用金属有机气相沉积(Metal Organic Vapor Phase Epitaxy, MOVPE)方式制备了电子倍增机制的SAM型短波HgCdTe APD器件,命名为Selex Avalanche Photodiode HgCdTe Infrared Array(SAPHIRA),器件增益可达66@14.5 V,单光子探测率达90%以上,中心距为24 μm的320×256阵列的SAPHIRA器件供给法国First Light Imaging公司,研发出了C-RED ONE相机,相机成功应用于美国天文探测的密歇根红外组合器(Michigan Infrared Combiner, MIRC),将MIRC的系统噪声降低了10~30倍,大大提高了条纹探测的信噪比。国内碲镉汞雪崩探测器研究起步比较晚,主要研究机构有中国科学院上海技术物理研究所、昆明物理研究所和华北光电技术研究所,受限于芯片制备技术和电路技术,目前没有实现光子计数方面的应用,但在焦平面研制上取得了一定进展。中国科学院上海技术物理研究所研制了PIN结构的单元、128×128阵列、320×256阵列中波HgCdTe APD器件,器件增益可达1000以上,增益100以内,增益归一化暗电流密度低于1×10−7 A/cm2,增益400以内的过剩噪声因子小于1.5,增益133时的噪声等效光子数为12,进行了短积分快速成像演示;单元器件带宽可达300~600 MHz。昆明物理研究所研制了PIN结构的单元和256×256阵列的中波HgCdTe APD器件,单元器件增益可达1000以上;在偏压8.5 V以内,焦平面平均增益归一化暗电流为9.0×10−14~ 1.6×10−13 A,过噪因子F介于1.0~1.5之间。国内主要是研制平面PIN结构的HgCdTe APD器件,技术路径与法国基本相同。因而,我国可借鉴CEA/LETI实验室成功经验和Lynred公司的运营模式,持续推进HgCdTe APD器件的研究,以早日达到国际先进水平,实现单光子探测和光子计数应用。
碲镉汞 光子计数 线性雪崩 光子探测效率 器件结构 过剩噪声 HgCdTe photon counting linear-mode avalanche photon detection efficiency device structure excess noise 
红外与激光工程
2023, 52(3): 20230036
作者单位
摘要
1 中科院上海技术物理研究所 红外材料与器件重点实验室,上海 200083
2 国科大杭州高等研究院,浙江 杭州 310024
对分子束外延(MBE)生长的原位As掺杂HgCdTe外延材料的热退火造成的As扩散控制进行研究。在较低的退火温度下获得了As扩散长度可控的HgCdTe材料,易于形成符合设计参数的PN结轮廓,为后续新型焦平面器件的研发提供基础。研究发现,在热退火过程中,原位As掺杂HgCdTe的As浓度的大小和纵向分布随着不同的Hg分压而发生改变。并通过理论计算获得了不同Hg分压下的As扩散系数。同时,通过数值模拟对不同As扩散长度的P-on-N器件结构进行了暗电流模拟,验证了As掺杂结深推进工艺的重要性。
碲镉汞 As扩散 热退火 暗电流 HgCdTe As diffusion thermal annealing dark current 
红外与毫米波学报
2022, 41(5): 799
作者单位
摘要
1 红外材料与器件重点实验室,中科院上海技术物理研究所,上海 200083
2 国科大杭州高等研究院,浙江 杭州 310024
对不同钝化层结构的分子束外延(MBE)生长的HgCdTe外延材料的Hg空位浓度控制进行研究。获得了更高Hg空位浓度调控范围的外延材料,为后续新型焦平面器件的研发提供基础。研究发现,在热退火过程中,HgCdTe外延材料的Hg空位浓度的变化随着钝化层结构的不同而发生改变。且这种改变是因为HgCdTe表层的钝化层的存在改变了原始热退火的平衡态过程。同时,通过二次离子质谱(SIMS)测试以及相应的理论拟合进行了验证。
碲镉汞 Hg空位 钝化层 热退火 HgCdTe Hg vacancy passivation layer thermal annealing 
红外与毫米波学报
2022, 41(2): 425
沈川 1杨辽 1郭慧君 1杨丹 1[ ... ]何力 1
作者单位
摘要
1 中国科学院上海技术物理研究所 红外材料与器件重点实验室,上海 200083
2 国科大杭州高等研究院,浙江 杭州 310024
本文对中波HgCdTe APD进行二维数值模拟,通过与实验结果的对比获得80K下PIN结构的APD器件参数。对不同工作温度下的APD器件暗电流机制进行了研究,发现在高工作温度下,影响暗电流的主要是SRH(小偏压)和雪崩机制(大偏压)。对在高工作温度情况下各层参数的变化引起器件性能的变化进行了研究,对不同层厚度、掺杂浓度对器件性能的影响进行了相应理论计算,并对计算结果进行相应的对比研究,获得了理论上最优化的HgCdTe APD高温器件结构,为后续高工作温度的APD器件的研发提供重要参考。
HgCdTe APD结构 数值模拟 高工作温度 HgCdTe APD numerical simulation Chigh operating temperature HOT 
红外与毫米波学报
2021, 40(5): 576
作者单位
摘要
中国科学院上海技术物理研究所 红外材料与器件重点实验室,上海 200083
对高温热退火前后分子束外延(MBE)生长的多层P-on-N结构HgCdTe外延材料的界面变化进行研究。研究发现,高温热退火将引起HgCdTe外延材料界面层的改变,从而破坏原生结构。这种改变可以一定程度上通过工艺条件进行控制。同时,对热退火前后P-on-N结构变化进行了二维数值模拟,研究了不同变化对其能带结构和光电流的影响。
碲镉汞 P-on-N 界面结构 热退火 光电流 HgCdTe P-on-N interface thermal annealing light current 
红外与毫米波学报
2021, 40(2): 156
作者单位
摘要
安徽大学电子信息工程学院, 安徽 合肥 230039
双目相位恢复方法通过在倒置显微镜上安装双相机,再经过单次曝光获得的正负离焦图像计算得到相位信息,但是目镜的加工误差和相机的安装误差等会导致图像间存在平移、旋转,使得相位恢复结果不准确。提出一种基于配准修复和强度传输方程的双目显微相位恢复算法。首先对离焦图像进行配准,然后引入图像修复方法对由配准产生的黑色空穴区域进行填充和复原,最后使用边界条件下强度传输方程获取高精度的相位恢复结果。模拟实验的结果相关系数达到0.9309,在微透镜阵列实验中,恢复结果与实际结果的相对误差为2.8%,证明了所提方法的正确性与有效性。
图像处理 相位恢复 强度传输方程 配准 图像修复 边界 
光学学报
2021, 41(12): 1210002
作者单位
摘要
1 安徽大学电气工程与自动化学院, 安徽 合肥 230601
2 安徽大学电子信息工程学院计算智能与信号处理教育部重点实验室, 安徽 合肥 230601
3 安徽创谱仪器科技有限公司, 安徽,合肥 230088
搭建了由共轴Schwarzschild望远镜组成的遥测LIBS系统,研究了不同导轨位置下样品距离波动时LIBS特征谱线光谱强度、相对标准偏差、光谱相似度和等离子体温度的变化情况,并结合物理机制分析了特征参数变化的原因。结果表明,样品位置波动对等离子体温度、特征谱线强度和相对标准偏差有显著影响,而光谱相似度则在一定范围内保持稳定;在光谱满足一定相似度的情况下,样品位置波动允差随样品距离的增加呈线性递增。当前系统聚焦范围为1.9~4.1 m时,在光谱相似度为0.99的情况下,样品位置波动允差的范围为70~220 mm。研究结果有利于高性能光学系统设计,并为光谱的定性和定量分析提供了理论参考。
光谱学 激光诱导击穿光谱 遥测 样品位置 光谱特征 相似度 
光学学报
2020, 40(7): 0730001
作者单位
摘要
安徽大学计算智能与信号处理教育部重点实验室, 安徽 合肥 230601
金(Au)亚波长光栅被溅射到经典硅基液晶(LCoS)的ITO电极上,它与薄液晶盒和底层铝电极组成复合共振波导结构,简称GLCoS。与基于液晶传播效应的LCoS截然不同,在GLCoS中,上电极的表面等离激元与光栅槽中的TM-FP (TM-Fabry Pérot)共振耦合,诱导一个0阶反射的相位调制;铝(Al)电极既是反射背板又与Au光栅、薄液晶盒组成波导,使共振耦合得到增强。在操控光波阵面的同时,GLCoS也作为电控器件,施加电压改变液晶的折射率,进而控制开腔FP的边缘介质条件,达到有源0~2π相位调制。实验结果表明,本文结构可用于1 μm量级像素的相位空间光调制器,在高空间带宽积的全息视频显示中具有广阔的应用前景。
光栅 全息视频显示 亚波长金属光栅 法布里-珀罗共振 硅基液晶 
光学学报
2020, 40(3): 0305001
作者单位
摘要
安徽大学 计算智能与信号处理教育部重点实验室, 安徽 合肥 230039
光强传输方程作为典型的相位恢复技术, 在已知待测面光强分布与光强轴向微分时, 可以通过求解该方程直接得到待测面的相位分布。强度微分可以通过采集沿传播方向的不同散焦面的光强信息以计算强度差分来估计, 由此, 散焦面的适当选择变得尤为重要。将光强传输方程与图像插值法相结合, 在几何光学模型下描述采集的散焦面光强分布与聚焦面光强分布之间的关系, 再利用图像插值法计算出模糊参数不同的散焦面的光强分布, 由新得到的散焦图和采集的聚焦图代入光强传输方程以计算出相位。该方法只需要采集三幅强度图像, 即可计算获得其他位置的强度图像, 避免了采集设备的多次移动, 也为某些特殊情况下无法获取适合位置的强度图像提供了一种解决途径。实验中搭建了一个实际的光强图像获取系统, 所得结果验证了所提算法的有效性。
几何光学 相位恢复 光强传输方程 图像插值 光学处理 geometric optics phase retrieval transport of intensity equation image interpolation optical processing 
红外与激光工程
2018, 47(10): 1026003
赵真典 1,2,*陈路 1傅祥良 1王伟强 1[ ... ]何力 1
作者单位
摘要
1 中国科学院上海技术物理研究所 材料与器件中心, 上海 200083
2 中国科学院大学, 北京 100049
采用As掺杂和激活技术制备的p+-on-n异质结材料是获得高性能长波碲镉汞红外焦平面器件的关键技术之一, 得到了广泛关注.采用变温IV拟合的方法, 对不同As掺入浓度与器件结性能相关性进行了分析, 发现降低结区内As掺杂浓度可以有效抑制器件的陷阱辅助隧穿电流.拟合结果表明, 较高浓度的Nt很可能与高浓度As掺入相关.因此As的稳定均匀掺入和激活被认为是主要技术挑战.实验研究了分子束外延过程中Hg/Te束流比与As掺入效率的关系, 发现相对富Hg的外延条件有助于提高As掺杂效率.研究还发现As的晶圆内掺杂均匀性与Hg/Te束流比的均匀性密切相关.对As的激活退火进行了研究, 发现在饱和Hg蒸汽压中采用300℃/16h+420℃/1 h+240℃/48 h的退火条件能明显提升碲镉汞中As原子的激活率.
红外焦平面 碲镉汞 砷掺杂 分子束外延 IRFPAs HgCdTe As-doping MBE 
红外与毫米波学报
2017, 36(5): 575

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!