红外与毫米波学报, 2019, 38 (4): 04508, 网络出版: 2019-10-14  

纳米线阵列高效太阳能转换的原理和研究进展

Research progress on semiconductor nanowires for high efficiency solar energy conversion
作者单位
1 上海理工大学 材料科学与工程学院,上海 200093
2 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
3 上海师范大学 数理学院,上海 200234
4 上海科技大学 物质科学与技术学院,上海 201210
摘要
首先从热力学角度讨论减少太阳能光伏结构效率损失,特别是光学熵损失的原理和途径,然后介绍半导体纳米线阵列在降低材料使用率的同时有效实现陷光和降低发射角的结构设计,其中由直径渐变纳米线形成的非周期阵列具有可见到近红外宽波段的导模共振陷光能力,同时极低的发射角大幅度地抑制了自发辐射引起的光子损失,成为有望突破Shockley-Queisser转换效率极限的光伏结构.
Abstract
In this paper, a thermodynamic analysis on current photovoltaics is given within the Shockley-Queisser model. Then the latest progresses of designing semiconductor nanowire arrays are introduced to achieve effective light trapping and reduce emission angle. Among them, non-uniform nanowire arrays with gradient shapes hold both advantages of ultralow emission angle and light trapping, therefore which have attracted much research interest toward ultrahigh efficiency of solar energy conversion from visible to near-infrared wavelength.
参考文献

[1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294-303.

[2] Global energy and CO2 status report [R]. International Energy Agency. 2019.https://www.iea.org/geco/renewables/

[3] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics [J]. Nature Materials, 2012, 11(3): 174-177.

[4] Green M A, Hishikawa Y, Dunlop E D, et al. Solar cell efficiency tables (version 51) [J]. Progress in Photovoltaics Research and Applications, 2018, 26(1): 144-150.

[5] Atwater J H, Spinelli P, Kosten E, et al. Microphotonic parabolic light directors fabricated by two-photon lithography [J]. Applied Physics Letters, 2011, 99(15):151113.

[6] Laux E, Genet C, Skauli T, et al. Plasmonic photon sorters for spectral and polarimetric imaging [J]. Nature Photonics, 2008, 2(3): 161-164.

[7] Coenen T, Vesseur E J R, Polman A. Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas [J]. ACS Nano, 2012, 6(2): 1742-1750.

[8] Xu Y, Gong T, Munday J N. The generalized Shockley-Queisser limit for nanostructured solar cells [J]. Scientific Reports, 2015, 5:13536.

[9] Yu Z F, Raman A, Fan S H. Fundamental limit of nanophotonic light trapping in solar cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17491-17496.

[10] Callahan D M, Munday J N, Atwater H A. Solar cell light trapping beyond the ray optic limit [J]. Nano Letters, 2012, 12(1): 214-218.

[11] Kayes B M, Atwater H A, Lewis N S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells [J]. Journal of Applied Physics, 2005, 97(11):123026.

[12] Garnett E, Yang P. Light trapping in silicon nanowire solar cells [J]. Nano Letters, 2010, 10(3): 1082-1087.

[13] Cao L, Fan P, Vasudev A P, et al. Semiconductor nanowire optical antenna solar absorbers [J]. Nano Letters, 2010, 10(2): 439-445.

[14] Kelzenberg M D, Boettcher S W, Petykiewicz J A, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications [J]. Nature Materials, 2010, 9(3): 239-244.

[15] Kupec J, Witzigmann B. Dispersion, wave propagation and efficiency analysis of nanowire solar cells [J]. Optics Express, 2009, 17(12): 10399-10410.

[16] Lapierre R R. Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell [J]. Journal of Applied Physics, 2011, 110(1): 346.

[17] Ertekin E, Greaney P A, Chrzan D C, et al. Equilibrium limits of coherency in strained nanowire heterostructures [J]. Journal of Applied Physics, 2005, 97(11): B3.

[18] Chuang L C, Moewe M, Chase C, et al. Critical diameter for III-V nanowires grown on lattice-mismatched substrates [J]. Applied Physics Letters, 2007, 90(4): 1687.

[19] Shockley W, Queisser H J. Detailed balance limit of efficiency of P-N junction solar cells [J]. Journal of Applied Physics, 1961, 32: 510-519.

[20] Yablonovitch E. Statistical ray optics [J]. Journal of the Optical Society of America, 1982, 72(7): 899-907.

[21] Wallentin J, Anttu N, Asoli D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit [J]. Science, 2013, 339(6123): 1057-1060.

[22] Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures [J]. Nature Materials, 2014, 13(5): 451-460.

[23] Fan S, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs [J]. Physical review. B, Condensed matter, 2002, 65(23): 235112.

[24] Vasudev A P, Schuller J A, Brongersma M L. Nanophotonic light trapping with patterned transparent conductive oxides [J]. Optics Express, 2012, 20(10): A385.

[25] Green M A. Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes [J]. IEEE Transactions on Electron Devices, 1984, 31(5): 671-678.

[26] Campbell P, Green M A. The limiting efficiency of silicon solar cells under concentrated sunlight [J]. IEEE Transactions on Electron Devices, 2005, 33(2): 234-239.

[27] Gerardo L A, Antonio M. Absolute limiting efficiencies for photovoltaic energy conversion [J]. Solar Energy Materials and Solar Cells, 1994, 33(2): 213-240.

[28] Braun A, Katz E A, Feuermann D, et al. Photovoltaic performance enhancement by external recycling of photon emission [J]. Energy and Environmental Science, 2013, 6(5): 1499-1503.

[29] Kosten E D, Kayes B M, Atwater H A. Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells [J]. Energy and Environmental Science, 2014, 7(6): 1907-1912.

[30] Martí A, Balenzategui J L, Reyna R F. Photon recycling and Shockley’s diode equation [J]. Journal of Applied Physics, 1997, 82(8): 4067-4075.

[31] Araújo G L, Martí A. Electroluminescence coupling in multiple quantum well diodes and solar cells [J]. Applied Physics Letters, 1995, 66(7): 894-895.

[32] Huang N, Lin C, Povinelli M L. Broadband absorption of semiconductor nanowire arrays for photovoltaic applications [J]. Journal of Optics, 2012, 14(2): 024004.

[33] Kailuweit P, Peters M, Leene J, et al. Numerical simulations of absorption properties of InP nanowires for solar cell applications [J]. Progress in Photovoltaics Research and Applications, 2012, 20(8): 945-953.

[34] Hu Y, Lapierre R R, Li M, et al. Optical characteristics of GaAs nanowire solar cells [J]. Journal of Applied Physics, 2012, 112(10): 104311.

[35] Anttu N, Xu H Q. Efficient light management in vertical nanowire arrays for photovoltaics [J]. Optics Express, 2013, 21(9): A558-A575.

[36] Dhindsa N, Chia A, Boulanger J, et al. Highly ordered vertical GaAs nanowire arrays with dry etching and their optical properties [J]. Nanotechnology, 2014, 25(30):305303.

[37] Kupec J. Light absorption and emission in nanowire array solar cells [J]. Optics Express, 2010, 18(26): 27589-27605.

[38] Fountaine K T, Kendall C G, Atwater H A. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation [J]. Optics Express, 2014, 22(S3): A930.

[39] Wang B, Leu P W. Tunable and selective resonant absorption in vertical NWs [J]. Optics Letters, 2012, 37(18): 3756-3758.

[40] Wu D, Tang X, Wang K, et al. An analytic approach for optimal geometrical design of GaAs nanowires for maximal light harvesting in photovoltaic cells [J]. Scientific Reports, 2017, 7: 46504.

[41] Mokkapati S, Saxena D, Tan H H, et al. Optical design of nanowire absorbers for wavelength selective photodetectors [J]. Scientific Reports, 2015, 5: 15339.

[42] Fountaine K T, Whitney W S, Atwater H A. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes [J]. Journal of Applied Physics, 2014, 116(15): 114302-1087.

[43] Foldyna M, Yu L, Cabarrocas P R I. Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells [J]. Solar Energy Materials and Solar Cells, 2013, 117(10): 645-651.

[44] Grzela G, Paniaguadomínguez R, Barten T, et al. Nanowire antenna emission [J]. Nano Letters, 2012, 12(11): 5481-5486.

[45] R Paniagua-Domínguez, Grzela G, J Gómez Rivas, et al. Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes [J]. Nanoscale, 2013, 5(21): 10582-90.

[46] Brown R G W. Absorption and scattering of light by small particles [M]. Wiley, 1983.

[47] Cao L, White J S, Park J S, et al. Engineering light absorption in semiconductor nanowire devices [J]. Nature Materials, 2009, 8(8): 643-647.

[48] Stewart G . Optical waveguide theory [M]. Chapman and Hall, 1983.

[49] Mann S A, Grote R R, Osgood R M, et al. Dielectric particle and void resonators for thin film solar cell textures [J]. Optics Express, 2011, 19(25): 25729-40.

[50] Guo H, Wen L, Li X, et al. Analysis of optical absorption in GaAs nanowire arrays [J]. Nanoscale Research Letters, 2011, 6(1): 617-617.

[51] Anttu, Nicklas. Shockley-Queisser detailed balance efficiency limit for nanowire solar cells [J]. ACS Photonics, 2015, 2(3): 446-453.

[52] Krogstrup P, Henrik Ingerslev Jrgensen, Heiss M, et al. Single-nanowire solar cells beyond the Shockley–Queisser limit [J]. Nature Photonics, 2013, 7(4): 306-310.

[53] Aberg I, Vescovi G, Asoli D, et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun [J]. IEEE Journal of Photovoltaics, 2015, 6(1): 185-190.

[54] Zhu J, Yu Z, Burkhard G F, et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays [J]. Nano Letters, 2009, 9(1): 279-282.

[55] Dhindsa N, Saini S. Top-down fabricated tapered GaAs nanowires with sacrificial etching of the mask [J]. Nanotechnology, 2017, 28(23): 235301.

[56] Diedenhofen S L, Janssen O T A, Grzela G, et al. Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires[J]. ACS Nano, 2011, 5(3): 2316-2323.

[57] Ken Xingze Wang, Zongfu Yu, Victor Liu, et al. Absorption enhancementin ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings [J]. Nano Letters, 2012, 12(3): 1616-1619.

[58] Fan Z, Kapadia R, Leu P W, et al. Ordered arrays of dual-diameter nanopillars for maximized optical absorption [J]. Nano Letters, 2010, 10(10): 3823-3827.

[59] Li Y, Li M, Fu P, et al. A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells [J]. Scientific Reports, 2015, 5: 11532.

[60] Bao H, Ruan X. Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications [J]. Optics Letters, 2010, 35(20): 3378-80.

[61] Lin C, Povinelli M L. Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics [J]. Optics Express, 2011, 19 Suppl 5(19): A1148.

[62] Du Q G, Kam C H, Demir H V, et al. Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications [J]. Optics Letters, 2011, 36(10):1884.

[63] Jung J Y, Zhou K, Lee J H. Broadband enhancement of optical absorption in a silicon nanowire flexible thin film [J]. Thin Solid Films, 2014, 570: 75-80.

[64] Kelzenberg M D, Boettcher S W, Petykiewicz J A, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications [J]. Nature Materials, 2010, 9(4): 368-368.

[65] Aghaeipour M, Pettersson H. Enhanced broadband absorption in nanowire arrays with integrated Bragg reflectors [J]. Nanophotonics, 2018. https://doi.org/10.1515/nanoph-2017-0101.

[66] Aghaeipour M, Pistol M E, Pettersson H. Considering symmetry properties of InP nanowire/light incidence systems to gain broadband absorption [J]. IEEE Photonics Journal, 2017, 9(3): 1-10.

童中英, 谢天, 叶新辉, 夏辉, 李菊柱, 张帅君, 姜新洋, 陈泽中, 李天信. 纳米线阵列高效太阳能转换的原理和研究进展[J]. 红外与毫米波学报, 2019, 38(4): 04508. TONG Zhong-Ying, XIE Tian, YE Xin-Hui, XIA Hui, LI Ju-Zhu, ZHANG Shuai-Jun, JIANG Xin-Yang, CHEN Ze-Zhong, LI Tian-Xin. Research progress on semiconductor nanowires for high efficiency solar energy conversion[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04508.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!