红外与毫米波学报, 2019, 38 (4): 04395, 网络出版: 2019-10-14  

Potentials of GaP as millimeter wave IMPATT diode with reference to Si, GaAs and GaN

Potentials of GaP as millimeter wave IMPATT diode with reference to Si, GaAs and GaN
作者单位
1 College of Engineering Bhubaneswar, Bhubaneswar, Odisha 752024, India
2 School of Physics, Sambalpur University, Sambalpur, Odisha 768019, India
3 National Institute of Science and Technology, Berhampur, Odisha 761008, India
摘要
Abstract
This paper presents the simulation results of DC, small-signal and noise properties of GaP based Double Drift Region (DDR) Impact Avalanche Transit Time (IMPATT) diodes. In simulation study we have considered the flat DDR structures of IMPATT diode based on GaP, GaAs, Si and GaN (wurtzite, wz) material. The diodes are designed to operate at the millimeter window frequencies of 94 GHz and 220 GHz. The simulation results of these diodes reveal GaP is a promising material for IMPATT applications based on DDR structure with high break down voltage (VB) as compared to Si and GaAs IMPATTs. It is also encouraging to worth note GaP base IMPATT diode shows a better output power density of 4.9×109 W/m2 as compared to Si and GaAs based IMPATT diode. But IMPATT diode based on GaN(wz) displays large values of break down voltage, efficiency and power density as compared to Si, GaAs and GaP IMPATTs.
参考文献

[1] Chang L C, Hu D H, Wang C C. Design considerations of high efficiency double drift silicon IMPATT diodes[J]. IEEE Trans. Electron. Devices, 1977, ED-24: 655-657.

[2] Midford T A, Bernick R L. Millimeter wave CW IMPATT diodes and oscillators[J]. IEEE Trans. Microwave Theory Tech., 1979, 27: 483-492.

[3] Chang Y, Hellum J M, Paul J A, et al. Millimeter-wave IMPATT sources for communication applications[J]. IEEE MTT-S International Microwave Symposium Digest, 1977, pp. 216-219.

[4] Luy J F, Casel A, Behr W, et al. A 90 GHz double-drift IMPATT diode made with Si MBE[J]. IEEE Transaction on Electron Devices, 1987, 34(5):1084-1089.

[5] Dalle C, Rolland P, Leiti G. Flat doping profile double-drift silicon IMPATT for reliable CW high power high efficiency generation in 90 GHz window[J]. IEEE Transaction on Electron Devices, 1990, 37(1): 227-236.

[6] Wollitzer M, Bucher J, Schafflr F, et al. D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz[J]. Electron Lettters, 1996, 32(2):122-123.

[7] Eisele H. Selective etching technology for 94 GHz, GaAs IMPATT diodes on diamond heat sink[J]. Solid State Electronics, 1989, 32(3):253-257.

[8] Eisele H. GaAs W-band IMPATT diodes for very low noise oscillations[J]. Electronics Letters, 1990, 26(2):109-110.

[9] Eisele H, Haddad G I. GaAs single-drift flat IMPATT diodes for CW operation at D-band[J]. Electronics Letters, 1992, 28(23):2176-2177.

[10] Tschernitz M, Freyer J. GaAs double-drift Read IMPATT diodes[J]. Electronics Letters, 1995, 31(7): 582-583.

[11] Eisele H, Chen C C, Munns G O, et al. The potential of InP IMPATT diodes as high-power millimeter wave source: first experimental results[J]. IEEE MIT-S Iternational Microwave Symp. Digest, 1996, 2:529-532.

[12] Pradhan J, Swain S K, Pattanaik S R, et al. Competence of 4H-SiC IMPATT diode for terahertz application[J]. Asian Journal of Physics, 2012, 21(2):175-1778.

[13] Mukherjee M, Mazumder N, Roy S K. α-SiC nanoscale transit-time diodes: performance of the photo-irradiated terahertz sources at elevated temperature[J]. Semicond. Sci. Technol. 2010, 25(5):055008.

[14] Panda A K, Pavlidis D, Alekseev E. DC and high frequency characteristics of GaN based IMPATTs[J]. IEEE Trans. on Electron devices, 2001, 48(4):820-823.

[15] Sayed E I, I-Badawy A E, Ibrahim S H. Large signal analysis of P-type GaAs IMPATT diode[C]. The 12th International Conference on Microelectronics, Tehran, Oct.31-Nov 2, 2000.

[16] Curow M. Proposed GaAs IMPATT device structure for D-band applications[J]. Electron. Lett. 1994, 30(19):1629-1630.

[17] Eisel H, Haddad G I. Enhanced performace of GaAs tunnett oscillators above 100 GHZ through diamond heat sinking and power combining[J]. IEEE Trans. On microw. Theo and Techn. 1994, 42(12):2498.

[18] Patnaik S R, Dash G R, Mishra J K. Prospects of 6H-SiC for operation as an IMPATT Diode at 140 GHz[J]. Semiconductor Science and Technology, 2005, 20(3): 299-304.

[19] Pradhan J, Pattanaik S R, Swain S K, et al. Low noise wide band gap SiC based IMPATT diodes at sub-millimeter-wave frequencies and at high temperature[J]. Journal of Semiconductors, 2014, 35(3):034006-1-6.

[20] M. Mukherjee, S. Banerjee and J. P. Banerjee, “Dynamic Characteristics of III-V and IV-IV Semiconductor Based Transit Time Devices in the Terahertz Regime: A Comparative Analysis” Terahertz Science and Technology, 2010,3(3): 97-108.

[21] Kyuregyan A S, Yurkov S N. Room-temperature avalanche breakdown voltages of Si, Ge, SiC, GaAs, GaP and InP[J]. Sov. Phys. Semicond.1989, 23(10):1126-1132.

[22] Blakemore J S. Semiconducting and other major properties of gallium arsenide[J]. J. Appl. Phys., 1982, 53(10):R123-R181.

[23] Pozhela J, Reklaitis A. Electron?transport properties in GaAs at high electric fields[J]. Solid State Electron, 1980, 23(9):927-933.

[24] Dalal V L, Dreeben A B, Triano A. Temperature dependence of hole velocity in p-GaAs[J]. J. Appl.Phys., 1971, 42(7):2864-2867.

[25] Pearsall T P, Capasso F, Nahory R E, et al. The band structure dependence of impact ionization by hot carriers in semiconductors, Solid State Electron[J]. 1978, 21:297-302.

[26] Maes W, De Meyer K, Van Overstraeten R. Impact ionization in silicon[J].?Solid State Electron., 1990, 33(6):705-718.

[27] Grant W N. Electron?and hole ionization rates in epitaxial silicon at high electric fields[J]. Solid State Electron., 1973, 16(10): 1189-1203.

[28] Jacoboni C, Canali C, Ottaviani G, et al. A review of some charge transport properties of silicon[J]. Solid State Electron, 1977, 20(2), 77-89.

[29] Arora V K, Mui D S L, Morkoc H. High-field electron drift velocity and temperature in gallium phosphide[J]. Appl. Phys, 1987,61:4703-4704.

[30] Johnson R H, Eknoyan O. High-field electron drift velocity measurements in gallium phosphide[J]. J. Appl. Phys, 1985, 58(3):1402-1403.

[31] Pradhan J, Swain S K, Pattanaik S R,et al. Identification of electron and hole ionization rates in GaAs with reference to IMPATT Diode[J]. IOSR Journal of Applied Physics (IOSR-JAP), 2012, 2(1):24-29.

[32] Chen S Y, Wang G. High-field properties of carrier transport in bulk wurtzite GaN: A Monte Carlo perspective[J]. J. Appl. Phys. 2008, 103(2):23703-23708.

[33] Albrecht J D, Wang R P, Ruden P P. Electron transport characteristics of GaN for high temperature device modeling[J]. J. Appl. Phys. 1998, 83(3):4777-4781.

, , , . Potentials of GaP as millimeter wave IMPATT diode with reference to Si, GaAs and GaN[J]. 红外与毫米波学报, 2019, 38(4): 04395. Janmejaya Pradhan, S K, S R, G N. Potentials of GaP as millimeter wave IMPATT diode with reference to Si, GaAs and GaN[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04395.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!