激光与光电子学进展, 2017, 54 (1): 011101, 网络出版: 2017-01-17   

基于补偿干涉仪的串联式全场光学相干层析系统

Compensation Interferometer Based Tandem Full-Field Optical Coherence Tomography System
作者单位
南京理工大学电子工程与光电技术学院光学工程系, 江苏 南京 210094
摘要
提出了一种基于补偿干涉仪的串联式全场光学相干层析(FF-OCT)系统。该系统包含共光路式探测干涉仪和双臂式补偿干涉仪, 前者用于探测样品的后向散射光, 后者用于补偿探测干涉仪两臂的光程差。采用宽带卤素灯光源和大数值孔径显微物镜进行成像; 利用单片机进行相位调制, 以便从干涉图像中获得样品的正面层析图像。进行了洋葱细胞的光学层析实验, 验证了系统的可行性。探测干涉仪基于共路式结构, 体积小, 对外界运动等的影响不敏感。使用光纤连接两个干涉仪, 可实现手持式探测干涉仪, 对实现内窥式探头具有重要意义。
Abstract
A tandem full-field optical coherence tomography (FF-OCT) system based on compensation interferometer is proposed. The new system consists of a common-path detection interferometer and a double-armed compensation interferometer. The former is used to detect the backscattered light from the sample, and the latter is used to compensate the optical path difference of two arms of the detection interferometer. A broadband halogen light source and a large numerical aperture microscopic objective are used for imaging. When the phase is modulated by a single chip-based control device, en-face tomography images of samples are obtained from the interference images. The experiment of optical tomography imaging for onion cells is conducted to demonstrate the feasibility of the proposed system. The detection interferometer based on the common-path structure has a small size and it is not sensitive to external environment. The handheld detection interferometer can be achieved when we use a fiber to connect two interferometers, and it has great importance in achieving endoscopic probes.
参考文献

[1] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[2] Swanson E A, Huang D, Lin C P, et al. High-speed optical coherence domain reflectometry[J]. Optics Letters, 1992, 17(2): 151-153.

[3] Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 1995, 117(1): 43-48.

[4] Choma M A, Sarunic M V, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 2003, 11(18): 2183-2189.

[5] Leitgeb R, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs time domain optical coherence tomography[J]. Optics Express, 2003, 11(8): 889-894.

[6] Liu B, Brezinski M E. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography[J]. Journal of Biomedical Optics, 2007, 12(4): 044007.

[7] Zysk A M, Nguyen F T, Oldenburg A L, et al. Optical coherence tomography: A review of clinical development from bench tobedside[J]. Journal of Biomedical Optics, 2007, 12(5): 051403.

[8] Zheng J G, Lu D Y, Chen T Y, et al. Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography[J]. Journal of Biomedical Optics, 2012, 17(7): 070503.

[9] Gao W R. Effects of temporal and spatial coherence on resolution in full-field optical coherence tomography[J]. Journal of Modern Optics, 2015, 62(21): 1764-1774.

[10] Gao W R. Image contrast reduction mechanism in full-field optical coherence tomography[J]. Journal of Microscopy, 2016, 261(3): 199-216.

[11] Davidson M, Kaufman K, Mazor I, et al. An application of interference microscopy to integrated circuit inspection and metrology[C]. SPIE, 1987, 0775: 233-246.

[12] Izatt J A, Swanson E A, Fujimoto J G, et al. Optical coherence microscopy in scattering media[J]. Optics Letters, 1994, 19(8): 590-592.

[13] Munce N R, Mariampillai A, Standish B A, et al. Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter[J]. Optics Letters, 2008, 33(7): 657-659.

[14] Jung W, Mc Cormick D T, Zhang J, et al. Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror[J]. Applied Physics Letters, 2006, 88(16): 163901.

[15] Oron D, Tal E, Silberberg Y. Scanning less depth-resolved microscopy[J]. Optics Express, 2005, 13(5): 1468-1476.

[16] Xie T, Mukai D, Guo S, et al. Fiber-optic-bundle-based optical coherence tomography[J]. Optics Letters, 2005, 30(14): 1803-1805.

[17] Tan K M, Mazilu M, Chow T H, et al. In-fiber common-path optical coherence tomography using a conical-tipfiber[J]. Optics Express, 2009, 17(4): 2375-2384.

[18] Vakhtin A B, Kane D J, Wood W R, et al. Common-path interferometer for frequency-domain optical coherence tomography[J]. Applied Optics, 2003, 42(34): 6953-6958.

[19] Beaurepaire E, Boccara A C, Lebec M, et al. Full-field optical coherence microscopy[J]. Optics Letters, 1998, 23(4): 244-246.

[20] Dubois A, Vabre L, Boccara A C, et al. High-resolution full-field optical coherence tomography with a Linnik microscope[J]. Applied Optics, 2002, 41(4): 805-812.

[21] Akiba M, Chan K P, Tanno N. Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras[J]. Optics Letters, 2003, 28(10): 816-818.

[22] Laude B, de Martino A, Drevillon B, et al. Full-field optical coherence tomography with thermal light[J]. Applied Optics, 2002, 41(31): 6637-6645.

[23] Dubois A, Grieve K, Moneron G, et al. Ultrahigh-resolution full-field optical coherence tomography[J]. Applied Optics, 2004, 43(14): 2874-2883.

[24] Zhu Y, Gao W, Zhou Y, et al. Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography[J]. Journal of Biomedical Optics, 2015, 20(11): 116010.

[25] Oh W Y, Bouma B E, Iftimia N, et al. Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging[J]. Optics Express, 2006, 14(19): 8675-8684.

[26] Bamford K, James J, Barr H, et al. Optical radar detection of precancerous bronchial tissue[J]. Lasers in Medical Science, 2000, 15(3): 188-194.

[27] Casaubieilh P, Ford H D, James S W, et al. Optical coherence tomography with a Fizeau interferometer configuration[C]. Optical Metrology, International Society for Optics and Photonics, 2005: 58580I.

[28] Ford H D, Tatam R P. Fibre imaging bundles for full-field optical coherence tomography[J]. Measurement Science and Technology, 2007, 18(9): 2949.

[29] Latrive A, Boccara A C. In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe[J]. Biomedical Optics Express, 2011, 2(10): 2897-2904.

[30] Benoita la Guillaume E, Martins F, Boccara C, et al. High-resolution handheld rigid endomicroscope based on full-field optical coherence tomography[J]. Journal of biomedical optics, 2016, 21(2): 026005.

郭英呈, 高万荣, 朱越. 基于补偿干涉仪的串联式全场光学相干层析系统[J]. 激光与光电子学进展, 2017, 54(1): 011101. Guo Yingcheng, Gao Wanrong, Zhu Yue. Compensation Interferometer Based Tandem Full-Field Optical Coherence Tomography System[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011101.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!