光学学报, 2011, 31 (8): 0814001, 网络出版: 2011-07-19   

抑制损伤发展的CO2激光修复技术及机理研究

Technology and Mechanism of CO2 Laser Treatment for Mitigating Surface Damage Growth
作者单位
1 中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
2 中国科学院研究生院, 北京 100049
摘要
熔石英表面激光损伤发展问题一直制约着激光器的运行通量。采用CO2激光在线熔融修复损伤点,修复后形成一个光滑的高斯坑,去除了损伤点中的裂纹,平滑了凹凸不平的表面,并且在紫外脉冲激光作用下,修复斑再次产生损伤的阈值高于熔石英元件的损伤生长阈值。因此CO2熔融修复技术能有效地抑制损伤发展。通过分析CO2激光作用下熔石英表面的温度分布,讨论修复坑的形成过程,确定激光参数对修复效果的影响,为寻找最佳修复参数提供理论基础。同时利用原子力显微镜(AFM)、轮廓仪细致分析损伤点和修复斑的微细结构,采用有限差分时域方法计算损伤点和修复斑周围的光强分布,探索消除裂纹和平滑表面对抑制损伤生长的作用。
Abstract
Growth of laser induced damage on the surface of fused silica plays a major role in determining optics lifetime in high power laser systems. CO2 laser is used to mitigate the damaged spot. It locally meltes and evaporates the fused silica surface, producing smooth, Gaussian shaped pit, eliminating the cracks and rough, uneven on surface. Moreover, the damage threshold of mitigation spot is much higher than the damage growth threshold of fused silica. So CO2 laser mitigation treatment can successfully inhibit the growth of laser-induced surface damage on fused silica. The temperature distribution on the surface of fused silica induced by a CO2 Gaussian beam has been discussed to analyze the formative process of Gaussian shaped pits and determine the best mitigation parameter. Atomic force microscopy (AFM) and profiler are applied to observe the micro-structure of damage and mitigation spots. Finite-difference time-domain (FDTD) method is applied to calculate the light intensity distribution around the mitigation and damage spots. They provide useful information to understand the mitigation mechanisms.
参考文献

[1] 黄进, 赵松楠, 王海军. 熔石英表面缺陷的CO2激光局部修复技术 [J]. 中国激光, 2009, 36(5): 1282~1285

    Huang Jin, Zhao Songnan, Wang Haijun et al.. Local CO2 laser treatment for repair surface defect in fused silica [J]. Chinese J. Lasers, 2009, 36(5): 1282~1285

[2] G. H. Hu, Y. A. Zhao, D. W. Li et al.. Studies of laser damage morphology reveal subsurface feature in fused silica Surf [J]. Interface Anal., 2010, 42(9): 1465~1468

[3] M.A. Norton, L.W. Hrubesh, Z.L. Wu et al.. Growth of laser initiated damage in fused silica at 351 nm [C]. SPIE, 2010, 4347: 468~473

[4] L. W. Hrubesh, M. A. Norton, W. A. Molandera et al.. Methods for mitigation surface damage growth on NIF final optics Proc [C]. SPIE, 2002, 4679: 23~33

[5] E. Mendez, K. M. Nowak, H. J. Baker et al.. Localized CO2 laser damage repair of fused silica optics [J]. Appl. Opt., 2006, 45(21): 5358~5367

[6] A. During, P. Bouchut, J. Coutard et al.. Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam Proc [C]. SPIE, 2007, 6403: 640323

[7] M. D. Feit, A. M. Rubenchik. Mechanisms of CO2 laser mitigation of laser damage growth in fused silica [C]. SPIE, 2003, 4932: 92~102

[8] 孙承伟, 陆启生, 范正修 等. 激光辐照效应[M]. 北京:国防工业出版社, 2002. 32~39

    Sun Chengwei, Lu Qisheng, Fan Zhengxiu et al.. Laser Radiation Effect [M]. Beijing: National Defence Industry Press, 2002. 32~39

[9] 方运, 张健, 吴丽莹. 基于时域有限差分法的液晶光学特性模拟 [J]. 光学学报, 2010, 30(2): 562~566

    Fang Yun, Zhang Jian, Wu Liying. Optical property simulation of liquid crystal based on finite-difference time-domain method [J]. Acta Optica Sinica, 2010, 30(2): 562~566

[10] 杨洗陈, 栗丽, 张烨. 激光熔覆中同轴粉末流温度场的数值模拟 [J]. 光学学报, 2009, 29(11): 3114~3120

    Yang Xichen, Li Li, Zhang Ye. Numerical simulation of temperature field of coxial power flow in laser cladding [J]. Acta Optica Sinica, 2009, 29(11): 3114~3120

胡国行, 赵元安, 李大伟. 抑制损伤发展的CO2激光修复技术及机理研究[J]. 光学学报, 2011, 31(8): 0814001. Hu Guohang, Zhao Yuan′an, Li Dawei. Technology and Mechanism of CO2 Laser Treatment for Mitigating Surface Damage Growth[J]. Acta Optica Sinica, 2011, 31(8): 0814001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!