量子电子学报, 2017, 34 (1): 1, 网络出版: 2017-02-09   

基于超导约瑟夫森结的双路径量子纠缠微波信号研究进展

Progress of dual-path quantum entanglement microwave signals based on superconducting Josephson junction
作者单位
空军工程大学信息与导航学院, 陕西 西安 710077
摘要
量子纠缠微波信号是微波频段的连续变量纠缠态,在固态量子信息处理、量子计算机和 量子通信等领域有巨大的应用前景。在超导条件下利用泵浦信号驱动约瑟夫森结可以产生纠缠微波。 简述了约瑟夫森参量放大器、约瑟夫森环形调制器和约瑟夫森混合器3种参量设备,介绍了2种基于 超导约瑟夫森结的双路径量子纠缠微波生成方案,比较了它们的异同,并指出了目前存在的问题, 预测了纠缠微波未来的研究方向和发展趋势。
Abstract
Quantum entanglement microwave signal is a continuous-variable entangled state in microwave frequency band. It has a great application prospect in the field of solid state quantum information processing, quantum computer and quantum communications. The entanglement microwave can be generated by using Josephson junction driven by pump signal in the environment of superconductivity. Three parametric devices of Josephson parametric amplifier, Josephson ring modulator and Josephson mixer are reviewed in brief. Two dual-path quantum entanglement microwave schemes based on superconducting Josephson junctions are introduced. The similarities and differences of them are compared, and the problems existing at present are pointed out. The future research direction and development tend of entanglement microwave are predicted.
参考文献

[1] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement[J]. Rev. Mod. Phys., 2009, 81(2): 865-931.

[2] Klimov P V, Falk A L, Christle D J, et al. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble[J]. Science Advances, 2015, 1(10): e1501015.

[3] Braunstein S L, Loock P. Quantum information with continuous variables[J]. Rev. Mod. Phys., 2005, 7: 513.

[4] Niemczyk T, Deppe F, Huebl H, et al. Circuit quantum electrodynamics in the ultra-strong coupling regime[J]. Nature Phys., 2010, 6: 772-776.

[5] Kelly J, Barends R, Fowler A G, et al. State preservation by repetitive error detection in a superconducting quantum circuit[J]. Nature, 2015, 519: 66-69.

[6] Nakamura Y, Yamamoto T. Microwave quantum photonics in superconducting circuits[J]. IEEE Photonics, 2012, 5(2): 0701406.

[7] Pechal M, Huthmacher L, Eichler C, et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics[J]. Phys. Rev. X, 2014, 4(4): 041010.

[8] Clarke J, Wilhelm F K. Superconducting quantum bits[J]. Nature, 2008, 453: 1031-1038.

[9] Devoret M H, Girvin S, Schoelkopf R. Circuit-QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be [J]. Annalen der Physik, 2007, 1(10-11): 767-779.

[10] Xia C W, Liang B L, Wang J S. Manipulation and entanglement of capacitive coupled charge qubits[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(3): 328-334 (in Chinese).

[11] Eichler C, Lang C, Fink J M, et al. Observation of entanglement between itinerant microwave photons and a superconducting qubit[J]. Phys. Rev. Lett., 2012, 109(24): 6380-6383.

[12] Lang C, Eichler C, Steffen L, et al. Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies[J]. Nature Physics, 2013, 9(6): 345-348.

[13] Fulop A, Kruckel C J, Castello D, et al. Triply resonant coherent four-wave mixing in silicon nitride microresonators[J]. Opt. Lett., 2015, 40(17): 4006-4009.

[14] Flavius S, Ananda R, Michael H, et al. Three-wave mixing with three incoming waves: Signal-idler coherent attenuation and gain enhancement in a parametric amplifier[J]. Phys. Rev. Lett., 2013, 111(7): 073903.

[15] Castellanos-Beltran M A, Irwin K D, Hilton G C, et al. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial[J]. Nature Phys., 2008, 4: 929-931.

[16] Zagoskin A M, Il’ichev E, McCutcheon M W, et al. Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit[J]. Phys. Rev. Lett., 2008, 101: 253602.

[17] Fedorov K G, Zhong L, Pogorzalek S, et al. Displacement of squeezed propagating microwave states[J]. Bulletin of the American Physical Society, 2016, 61(2): 6.

[18] Mallet F, Castellanos-Beltran M A, Ku H S, et al. Quantum state tomography of an itinerant squeezed microwave field[J]. Phys. Rev. Lett., 2011, 106: 220502.

[19] Menzel E P, Deppe F, Mariantoni M, et al. Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography[J]. Phys. Rev. Lett., 2010, 105(10): 100401.

[20] Yang F, Cong S. Entanglement detection and measurement of quantum systems[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2011, 28(4): 391-401 (in Chinese).

[21] Bozyigit D, Lang C, Steffen L, et al. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors[J]. Nature Physics, 2011, 7(2): 154-158.

[22] Menzel E P, Candia R D, Deppe F, et al. Path entanglement of continuous-variable quantum microwaves[J]. Phys. Rev. Lett., 2012, 109(25): 250502.

[23] Flurin E, Roch N, Mallet F, et al. Generating entangled microwave radiation over two transmission lines[J]. Phys. Rev. Lett., 2012, 109(18): 183901.

[24] Yurke B, Kaminsky P G, Miller R E, et al. Observation of 4.2 K equilibrium-noise squeezing via a Josephson-parametric amplifier[J]. Phys. Rev. Lett., 1988, 60(9): 764-767.

[25] Movshovich R, Yurke B, Kaminsky P G, et al. Observation of zero-point noise squeezing via a Josephson parametric amplifier[J]. Phys. Rev. Lett., 1988, 60(9): 764-767.

[26] Yamamoto T, Inomata K, Watanabe M, et al. Flux-driven Josephson parametric amplifier[J]. Appl. Phys. Lett., 2008, 93: 042510.

[27] Zhong L, Menzel E P, Candia R D, et al. Squeezing with a flux-driven Josephson parametric amplifier[J]. New J. Phys., 2013, 15: 125013.

[28] Castellanos-Beltran M A, Lehnert K W. Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator[J]. Appl. Phys. Lett., 2007, 91: 083509.

[29] Mutus J Y, White T C, Barends R, et al. Strong environmental coupling in a Josephson parametric amplifier[J]. Appl. Phys. Lett., 2014, 104(26): 263513.

[30] Zhou X, Schmitt V, Bertet P, et al. High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID-array[J]. Phys. Rev. B, 2014, 89: 214517.

[31] Bergeal N, Vijay R, Manucharyan V E, et al. Analog information processing at the quantum limit with a Josephson ring modulator[J]. Nature Physics, 2008, (4): 296-302.

[32] Bergeal N, Schackert F, Metcalfe M, et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator[J]. Nature, 2010, 465: 64-69.

[33] Abdo B, Kamal A, Devoret M. Non-degenerate, three-wave mixing with the Josephson ring modulator[J]. Phys. Rev. B, 2013, 87: 014508.

[34] Roch N, Flurin E, Nguyen F, et al. Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit[J]. Phys. Rev. Lett., 2012, 108: 1-5.

[35] Pillet J D, Flurin E, Mallet F, et al. A compact design for the Josephson mixer: The lumped element circuit[J]. Appl. Phys. Lett., 2015, 106: 222603.

[36] Flurin E, Roch N, Pillet J D, et al. Superconducting quantum node for entanglement and storage of microwave radiation[J]. Phys. Rev. Lett., 2015, 114: 090503.

[37] Li P B, Gao S Y, Li F L. Engineering two-mode entangled states between two superconducting resonators by dissipation[J]. Phys. Rev. A, 2012, 8(1): 012318.

[38] Li P B, Gao S Y, Li F L. Robust continuous-variable entanglement of microwave photons with cavity electromechanics[J]. Phys. Rev. A, 2013, 88(4): 043802.

[39] Homann E, Deppe F, Niemczyk T, et al. A superconducting 180° hybrid ring coupler for circuit quantum electrodynamics[J]. Appl. Phys. Lett., 2010, 97(22): 222508.

[40] Kim M S, Son W, Buzek V, et al. Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement[J]. Phys. Rev. A, 2002, 65: 032323.

[41] Mariantoni M, Menzel E P, et al. Planck spectroscopy and quantum noise of microwave beam splitters[J]. Phys. Rev. Lett., 2010, 105(13): 133601.

[42] Eichler C, Bozyigit D, Lang C, et al. Observation of two-mode squeezing in the microwave frequency domain[J]. Phys. Rev. Lett., 2011, 107(11): 113601.

[43] Shchukin E, Vogel W. Inseparability criteria for continuous bipartite quantum states[J]. Phys. Rev. Lett., 2005, 95: 230502.

[44] Vidal G, Werner R F. Computable measure of entanglement[J]. Phys. Rev. A, 2002, 65: 032314.

吴德伟, 李响, 杨春燕, 苗强. 基于超导约瑟夫森结的双路径量子纠缠微波信号研究进展[J]. 量子电子学报, 2017, 34(1): 1. WU Dewei, LI Xiang, YANG Chunyan, MIAO Qiang. Progress of dual-path quantum entanglement microwave signals based on superconducting Josephson junction[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 1.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!