中国激光, 2017, 44 (1): 0102004, 网络出版: 2017-01-10   

飞秒激光制备微光学元件及其应用 下载: 3594次

Application of Micro-Optical Components Fabricated with Femtosecond Laser
作者单位
1 吉林大学机械科学与工程学院, 吉林 长春 130025
2 吉林大学电子科学与工程学院集成光电子学国家重点联合实验室, 吉林 长春 130012
引用该论文

曹小文, 张雷, 于永森, 陈岐岱. 飞秒激光制备微光学元件及其应用[J]. 中国激光, 2017, 44(1): 0102004.

Cao Xiaowen, Zhang Lei, Yu Yongsen, Chen Qidai. Application of Micro-Optical Components Fabricated with Femtosecond Laser[J]. Chinese Journal of Lasers, 2017, 44(1): 0102004.

参考文献

[1] Revzin A, Russell R J, Yadavalli V K, et al. Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography[J]. Langmuir, 2001, 17(18): 5440-5447.

[2] Cox JA. Application of diffractive optics to infrared imagers[C]. SPIE, 1995, 2550: 304- 312.

[3] Pease R F W. Electron beam lithography[J]. Contemporary Physics, 1981, 22(3): 265-290.

[4] Vieu C, Carcenac F, Pepin A, et al. Electron beam lithography: resolution limits and applications[J]. Appl Surf Sci, 2000, 164(1): 111-117.

[5] Lin X F, Chen Q D, Niu L G, et al. Mask-free production of integratable monolithic micro logarithmic axicon lenses[J]. Journal of Lightwave Technology, 2010, 28(8): 1256-1260.

[6] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

[7] Maruo S, Fourkas J T. Recent progress in multiphoton microfabrication[J]. Laser & Photonics Reviews, 2008, 2(1-2): 100-111.

[8] Tanaka T, Sun H B, Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Appl Phys Lett, 2002, 80(2): 312-314.

[9] Tan D, Li Y, Qi F, et al. Reduction in feature size of two-photon polymerization using SCR500[J]. Appl Phys Lett, 2007, 90(7): 071106.

[10] Gan Z, Cao Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

[11] Clark-MXR, Inc. Matching with ultrafast laser pulse[EB/OL]. [ 2016- 09- 01]. . http://www.cmxr.com/Education/Short.html

[12] Joglekar A P, Liu H H, Meyhöfer E, et al. Optics at critical intensity: applications to nanomorphing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 5856-5861.

[13] Cheng Y, Tsai H L, Sugioka K, et al. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining[J]. Appl Phys A, 2006, 85(1): 11-14.

[14] Qiao L, He F, Wang C, et al. A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining[J]. Appl Phys A, 2010, 102(1): 179-183.

[15] Qiao L, He F, Wang C, et al. Fabrication of a micro-optical lens using femtosecond laser 3D micromachining for two-photon imaging of bio-tissues[J]. Opt Commun, 2011, 284(12): 2988-2991.

[16] Zheng C, Hu A M, Kihm K D, et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a pmma substrate for super-wide angle imaging[J]. Small, 2015, 11(25): 3007-3016.

[17] Antipov S, Baryshev S V, Butler J E, et al. Single-crystal diamond refractive lens for focusing X-Rays in two dimensions[J]. Journal of Synchrotron Radiation, 2016, 23(1): 163-168.

[18] Xu J J, Yao W G, Tian Z N, et al. High curvature concave-convex microlens[J]. IEEE Photonics Technol Lett, 2015, 27(23): 2465-2468.

[19] Lu D X, Zhang Y L, Han D D, et al. Solvent-tunable pdms microlens fabricated by femtosecond laser direct writing[J]. J Mater Chem C, 2015, 3(8): 1751-1756.

[20] Karp J H, Tremblay E J, Ford J E. Planar micro-optic solar concentrator[J]. Opt Express, 2010, 18(2): 1122-1133.

[21] Wu D, Wang J N, Niu L G, et al. Bioinspired fabrication of high-quality 3d artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging[J]. Advanced Optical Materials, 2014, 2(8): 751-758.

[22] Chen F, Liu H, Yang Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Opt Express, 2010, 18(19): 20334-20343.

[23] Qu P, Chen F, Liu H, et al. A simple route to fabricate artificial compound eye structures[J]. Opt Express, 2012, 20(5): 5775-5782.

[24] Bian H, Yang Q, Chen F, et al. Scalable shape-controlled fabrication of curved microstructures using a femtosecond laser wet-etching process[J]. Materials Science and Engineering: C, 2013, 33(5): 2795-2799.

[25] Deng Z, Yang Q, Chen F, et al. High-performance laser beam homogenizer based on double-sided concave microlens[J]. IEEE Photonics Technol Lett, 2014, 26(20): 2086-2089.

[26] Meng X, Chen F, Yang Q, et al. Simple fabrication of closed-packed ir microlens arrays on silicon by femtosecond laser wet etching[J]. Appl Phys A, 2015, 121(1): 157-162.

[27] Hu Y, Chen Y, Ma J, et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization[J]. Appl Phys Lett, 2013, 103(14): 141112.

[28] Tian Z N, Yao W G, Xu J J, et al. Focal varying microlens array[J]. Opt Lett, 2015, 40(18): 4222-4225.

[29] Bricchi E, Mills J D, Kazansky P G, et al. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining[J]. Opt Lett, 2002, 27(24): 2200-2202.

[30] Kim J K. Kim J Oh K, et al. Fabrication of micro fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system[J]. IEEE Photonics Technol Lett, 2009, 21(1): 21-23.

[31] Kim J, Ha W, Park J, et al. Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed Laser[J]. IEEE Photonics Technol Lett, 2013, 25(8): 761-763.

[32] Komlenok M S, Volodkin B O, Knyazev B A, et al. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation[J]. Quantum Electron, 2015, 45(10): 933-936.

[33] Li Q K, Yu Y H, Wang L, et al. Sapphire-based fresnel zone plate fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonics Technol Lett, 2016, 28(12): 1290-1293.

[34] Niu L G, Wang D, Jiang T, et al. High fill-factor multilevel fresnel zone plate arrays by femtosecond laser direct writing[J]. Opt Commun, 2011, 284(3): 777-781.

[35] Sun Y L, Dong W F, Niu L G, et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing[J]. Light: Science & Applications, 2014, 3(1): e129.

[36] Chen Q D, Lin X F, Niu L G, et al. Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization[J]. Opt Lett, 2008, 33(21): 2559-2561.

[37] Zhou K, Guo Z, Ding W, et al. Analysis on volume grating induced by femtosecond laser pulses[J]. Opt Express, 2010, 18(13): 13640-13646.

[38] Yu X, Yao B, Lei M, et al. Polarization-sensitive diffractive optical elements fabricated in br films with femtosecond laser[J]. Appl Phys B, 2014, 115(3): 365-369.

[39] Xiao T P, Cifci O S, Bhargava S, et al. Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3d direct laser writing[J]. ACS Photonics, 2016, 3(5): 886-894.

[40] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Opt Lett, 1996, 21(21): 1729-1731.

[41] Fletcher L B, Witcher J J, Troy N, et al. Direct femtosecond laser waveguide writing inside zinc phosphate glass[J]. Opt Express, 2011, 19(9): 7929-7936.

[42] Okhrimchuk A, Mezentsev V, Shestakov A, et al. Low loss depressed cladding waveguide inscribed in YAG∶Nd single crystal by femtosecond laser pulses[J]. Opt Express, 2012, 20(4): 3832-3843.

[43] Sakakura M, Sawano T, Shimotsuma Y, et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam[J]. Opt Express, 2010, 18(12): 12136-12143.

[44] He R, Hernández-Palmero I, Romero C, et al. Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing[J]. Opt Express, 2014, 22(25): 31293-31298.

[45] Sun Y L, Sun S M, Zheng B Y, et al. Protein-based multi-mode interference optical micro-splitters[J]. IEEE Photonics Technol Lett, 2016, 28(6): 629-632.

[46] Li B, Jiang L, Wang S, et al. Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing[J]. Opt Laser Technol, 2011, 43(8): 1420-1423.

[47] Chen C, Yu Y S, Yang R, et al. Reflective optical fiber sensors based on tilted fiber bragg gratings fabricated with femtosecond laser[J]. Journal of Lightwave Technology, 2013, 31(3): 455-460.

[48] Cui W, Si J, Chen T, et al. Compact bending sensor based on a fiber bragg grating in an abrupt biconical taper[J]. Opt Express, 2015, 23(9): 11031-11036.

[49] Duan J, Xie Z, Wang C, et al. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber[J]. Opt Laser Technol, 2016, 83: 94-98.

[50] Lin J, Yu S, Ma Y, et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing[J]. Opt Express, 2012, 20(9): 10212-10217.

[51] Lin J, Xu Y, Song J, et al. Low-threshold whispering-gallery-mode microlasers fabricated in a Nd∶glass substrate by three-dimensional femtosecond laser micromachining[J]. Opt Lett, 2013, 38(9): 1458-1460.

[52] Ku J F, Chen Q D, Ma X W, et al. Photonic-molecule single-mode laser[J]. IEEE Photonics Technol Lett, 2015, 27(11): 1157-1160.

[53] Huang Q, Zhan X, Hou Z, et al. Polymer photonic-molecule microlaser fabricated by femtosecond laser direct writing[J]. Opt Commun, 2016, 362: 73-76.

[54] Salter P S, Booth M J. Addressable microlens array for parallel laser microfabrication[J]. Opt Lett, 2011, 36(12): 2302-2304.

[55] Li Q S. W L J, Tian Z N, et al. Direct integration of aspherical microlens on vertical-cavity surface emitting laser emitting surface for beam shaping[J]. Opt Commun, 2013, 300: 269-273.

[56] Lü Chao, Xia H, Guan W, et al. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems[J]. Scientific Reports, 2016, 6: 19801.

[57] Choi J, Ramme M, Richardson M. Directly laser-written integrated photonics devices including diffractive optical elements[J]. Opt Lasers Eng, 2016, 83: 66-70.

[58] Crespi A, Ramponi R, Osellame R, et al. Integrated photonic quantum gates for polarization qubits[J]. Nature Communications, 2011, 2: 566.

[59] Corrielli G, Crespi A, Geremia R, et al. Rotated waveplates in integrated waveguide optics[J]. Nature Communications, 2014, 5: 4249.

[60] Della Valle G, Taccheo S, Osellame R, et al. 1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing[J]. Opt Express, 2007, 15(6): 3190-3194.

[61] Ams M, Dekker P, Marshall G D, et al. Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique[J]. Opt Lett, 2009, 34(3): 247-249.

[62] Cheng Y, Sugioka K, Midorikawa K, et al. Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser[J]. Opt Lett, 2003, 28(13): 1144-1146.

[63] Wu D, Chen Q D, Niu L G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 2009, 9(16): 2391-2394.

[64] Kato J, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Appl Phys Lett, 2005, 86(4): 044102.

[65] Juodkazis S, Mizeikis V, Misawa H. Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications[J]. J Appl Phys, 2009, 106(5): 051101.

曹小文, 张雷, 于永森, 陈岐岱. 飞秒激光制备微光学元件及其应用[J]. 中国激光, 2017, 44(1): 0102004. Cao Xiaowen, Zhang Lei, Yu Yongsen, Chen Qidai. Application of Micro-Optical Components Fabricated with Femtosecond Laser[J]. Chinese Journal of Lasers, 2017, 44(1): 0102004.

本文已被 19 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!