作者单位
摘要
1 中国科学院 宁波材料技术与工程研究所,浙江宁波3520
2 宁波大艾激光科技有限公司,浙江宁波31501
为了提高化学气相沉积(Chemical Vapor Deposition,CVD)金刚石的切深,采用新型的声光调制高重复频率激光器,研究了激光功率、焦点位置、激光重复频率、切割线速度以及激光横膜模式对CVD金刚石切缝宽度、切深以及表面粗糙度的影响。研究结果表明:切深和切缝上表面宽随着激光功率的增大而增大;焦点位置随切深的变化下移,可获得最大切深;重复频率的增大伴随着切深的减小和切缝上表面宽的增大;表面粗糙度随着切割线速度的增大先缓慢减小后显著增大;切缝上表面宽随着模式数的增多而增大。综合切深、缝宽和效率,最后在输出基横模下激光功率为12 W,重复频率为6 kHz,切割线速度为1 500 mm/min,焦点位置始终位于切割凹面,获得了效率最快、质量最好的结果,即单向切深最大可达7.2 mm,切面表面的粗糙度为0.804 µm,切缝上表面宽度为350 µm,满足在低切面表面粗糙度下获得CVD金刚石大切深的要求。
激光切割 化学气相沉积金刚石 高频激光 缝宽 切深 表面粗糙度 laser cutting chemical vapor deposition diamond high repetition rate laser width of cutting seam cutting depth surface roughness 
光学 精密工程
2022, 30(1): 89
作者单位
摘要
1 清华大学 精密仪器系, 北京 100083
2 中国科学院 宁波材料技术与工程研究所, 浙江 宁波 315201
3 吉林大学 电子科学与工程学院, 吉林 长春 130012
作为最基本的微光学元件, 微透镜在多个领域都有非常广泛的潜在应用, 然而常见的面向透明硬脆材料微透镜的制备方法效率低下, 且对作业环境的要求较高, 极大地限制了透明硬脆材料微透镜阵列的大面积制备。空间光调制器作为一种对光场进行调制的设备, 可以方便地实现多焦点或者结构化的光场, 在光通讯、激光加工等领域具有重要的应用潜力。本文介绍了利用飞秒激光烧蚀结合湿法刻蚀制备硬脆材料微透镜阵列的基本方法, 并系统地分析了影响所制备微透镜形貌的关键因素。通过在加工过程中对聚焦光斑的数量和位置进行精细调控, 极大地提高了透明硬脆材料微透镜阵列的加工效率, 且可以在加工过程中动态地调整飞秒激光烧蚀改性的形貌, 从而实现不同尺寸微透镜阵列的高速制备, 展现了空间光场调制技术在微光子集成芯片加工领域的应用前景。
飞秒激光 湿法刻蚀 空间光场调制 微透镜阵列 femtosecond laser wet etching spatial light modulation microlens 
液晶与显示
2021, 36(6): 827
作者单位
摘要
1 吉林大学机械科学与工程学院, 吉林 长春 130025
2 吉林大学电子科学与工程学院集成光电子学国家重点联合实验室, 吉林 长春 130012
近年来, 微光学元件的制备与应用受到人们的广泛关注。微光学元件体积小、重量轻及制造成本低, 并且易于与微机电系统相集成, 能够实现普通光学元件难以实现的功能, 在光纤通信、信息处理、航空航天、生物医学、激光技术、光计算等领域, 突显出重要的应用价值。飞秒激光因其超短的脉冲宽度和超高的瞬时功率, 能够实现超高精度的微纳加工, 轻松突破衍射极限。飞秒激光加工技术对材料没有选择性, 加工过程也非常灵活, 可以进行任意复杂结构的加工, 丰富了微光学元件的制备种类。飞秒激光还能在现有结构或系统上进行集成加工, 极大扩展了微光学元件的应用。简要概述了微光学元件的优点及一些常用的制备方法, 同时对飞秒激光加工技术进行了简单概括, 对近年来飞秒激光制备各种微光学元件的实验和应用研究进行了综述, 最后对微光学元件未来的研究方向进行了预测和展望。
激光制造 微光学元件 飞秒激光 微纳加工 集成光学 
中国激光
2017, 44(1): 0102004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!