Author Affiliations
Abstract
National University of Singapore, College of Design and Engineering, Optical Bioimaging Laboratory, Department of Biomedical Engineering, Singapore
Three-dimensional (3D) imaging is essential for understanding intricate biological and biomedical systems, yet live cell and tissue imaging applications still face challenges due to constrained imaging speed and strong scattering in turbid media. Here, we present a unique phase-modulated stimulated Raman scattering tomography (PM-SRST) technique to achieve rapid label-free 3D chemical imaging in cells and tissue. To accomplish PM-SRST, we utilize a spatial light modulator to electronically manipulate the focused Stokes beam along the needle Bessel pump beam for SRS tomography without the need for mechanical z scanning. We demonstrate the rapid 3D imaging capability of PM-SRST by real-time monitoring of 3D Brownian motion of polystyrene beads in water with 8.5 Hz volume rate, as well as the instant biochemical responses to acetic acid stimulants in MCF-7 cells. Further, combining the Bessel pump beam with a longer wavelength Stokes beam (NIR-II window) provides a superior scattering resilient ability in PM-SRST, enabling rapid tomography in deeper tissue areas. The PM-SRST technique provides ∼twofold enhancement in imaging depth in highly scattering media (e.g., polymer beads phantom and biotissue like porcine skin and brain tissue) compared with conventional point-scan SRS. We also demonstrate the rapid 3D imaging ability of PM-SRST by observing the dynamic diffusion and uptake processes of deuterium oxide molecules into plant roots. The rapid PM-SRST developed can be used to facilitate label-free 3D chemical imaging of metabolic activities and functional dynamic processes of drug delivery and therapeutics in live cells and tissue.
stimulated Raman scattering tomography deep tissue Raman imaging spatial light modulation 
Advanced Photonics
2024, 6(2): 026001
作者单位
摘要
1 江苏大学机械工程学院,江苏 镇江 212013
2 江苏大学微纳光电子与太赫兹技术研究院,江苏 镇江 212013
3 中国科学院上海光学精密机械研究所,上海 201800
基于空间光调制器外光路分束进行并行加工是提高超快激光加工效率的有效方法。高均匀度分束算法是实现外光路分束的关键。在实际光路中,由于光路不完全满足理论条件,经典的GS算法生成的多光束均匀度远低于理论值,不满足阵列化激光加工的要求。基于GS?GA算法的思想与图像处理技术,在程序设计中引入了实时反馈的功能,以达到提高分束均匀度的目的。并采用加载菲涅耳透镜相位的方式分离零级光,避免重建光场离轴带来的畸变。最终实现了均匀度接近94%的分束,并通过加工实验验证了高均匀度分束算法在精密加工中的应用效果。
激光技术 空间光调制 分束整形 超快激光精密加工 遗传算法 GS算法 
中国激光
2023, 50(16): 1602401
作者单位
摘要
西安工业大学 光电工程学院 陕西省薄膜技术与光学检测重点实验室,西安 710021
提出一种异质材料双层微金字塔结构耦合空间光调制的光子纳米射流光学元件,实现了光子纳米射流的动态可调。通过时域有限差分法进行仿真计算,分析了微结构与背景折射率对比度减小时,光子纳米射流性能特征变化的基本规律。研究结果表明,改变液晶分子的旋转角,焦距变化范围由6.1λ达到了22.3λ,衰减长度最长达到36.5λ,与双层微球结构耦合液晶光子纳米射流相比提高了10λ。随着微结构与背景介质折射率之比的减小,半高全宽增大,聚焦效率的调节范围可以达到16.9%~43.2%,此时,焦点逐渐远离微结构,能量向远场传输。借助于液晶这一空间光调制手段,双层微金字塔结构光子纳米射流实现了大范围的焦距调节和超长的传播长度,为光子纳米射流在光电探测、光学捕获等方面的应用提供理论支持。
Mie散射理论 光子纳米射流 时域有限差分 空间光调制 微纳功能结构 Mie scattering theory Photonic nanojet Finite difference time domain Spatial light modulation Micronano functional structure 
光子学报
2022, 51(12): 1223001
作者单位
摘要
1 河南科技大学 物理工程学院,河南 洛阳 471023
2 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,陕西 西安 710119
3 河南科技大学 化工与制药学院,河南 洛阳 471023
轨道角动量(OAM)的发现为光镊的研究开辟了新的道路。但具有OAM的光束在操纵微粒时,由于生物细胞不可能大小形状完全相同,所以当其进行旋转等操作时,粒子运动速度的不均匀会导致粒子之间的间距不可控。针对该问题,首先通过任意曲线塑形技术,并为传统摆线公式附加曲率调控参数提出了一种调控模式丰富的摆线光束,理论分析了该光束的OAM和梯度力,证明了解决上述问题的可能性。最后在实验中实现了粒子在运动过程中的启停,且成功操纵三个粒子进行等间距旋转,实验测得三个微粒在整个旋转过程中间距变化的误差可以维持在纳米级。这项工作为未来光捕获和操纵多种微粒在其他领域的应用铺平了道路,特别是在生物科学领域。
物理光学 全光光镊 计算全息 空间光调制 physical optics all-optical tweezers computational holography spatial light modulation 
红外与激光工程
2021, 50(9): 20210380
作者单位
摘要
1 河南科技大学 物理工程学院, 河南 洛阳 471023
2 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 陕西 西安710119
提出一种基于非对称涡旋光束的动态光镊, 实验中基于计算全息技术, 通过对涡旋光束的动态调控, 实现了酵母菌细胞的分离与聚合, 探究了非对称动态涡旋光束对酵母菌细胞的操纵特性。计算了用此光镊系统操纵酵母菌细胞时的光阱刚度, 在激光器出射功率为230 mW时, 光阱刚度统计均值为0.098 5 pN/μm。
光镊 非对称涡旋光束 计算全息 空间光调制 光阱刚度 optical tweezers asymmetric vortex beam computational holography spatial light modulation optical trap stiffness 
液晶与显示
2021, 36(6): 841
作者单位
摘要
1 清华大学 精密仪器系, 北京 100083
2 中国科学院 宁波材料技术与工程研究所, 浙江 宁波 315201
3 吉林大学 电子科学与工程学院, 吉林 长春 130012
作为最基本的微光学元件, 微透镜在多个领域都有非常广泛的潜在应用, 然而常见的面向透明硬脆材料微透镜的制备方法效率低下, 且对作业环境的要求较高, 极大地限制了透明硬脆材料微透镜阵列的大面积制备。空间光调制器作为一种对光场进行调制的设备, 可以方便地实现多焦点或者结构化的光场, 在光通讯、激光加工等领域具有重要的应用潜力。本文介绍了利用飞秒激光烧蚀结合湿法刻蚀制备硬脆材料微透镜阵列的基本方法, 并系统地分析了影响所制备微透镜形貌的关键因素。通过在加工过程中对聚焦光斑的数量和位置进行精细调控, 极大地提高了透明硬脆材料微透镜阵列的加工效率, 且可以在加工过程中动态地调整飞秒激光烧蚀改性的形貌, 从而实现不同尺寸微透镜阵列的高速制备, 展现了空间光场调制技术在微光子集成芯片加工领域的应用前景。
飞秒激光 湿法刻蚀 空间光场调制 微透镜阵列 femtosecond laser wet etching spatial light modulation microlens 
液晶与显示
2021, 36(6): 827
作者单位
摘要
中国科学技术大学 精密机械与精密仪器系, 安徽 合肥 230027
微驱动技术由于驱动方式的多样性和应用的广泛性, 在近年来受到了越来越多的关注。本文提出一种利用飞秒激光同时实现微结构加工和旋转驱动的技术。利用双光子聚合加工直径20~30 μm的微转子结构, 然后结合空间光调制器调制出带有光学轨道角动量的光场, 实现对微转子结构的旋转驱动, 并获得了40 r/s的转动速率。详细介绍了利用飞秒激光直写技术加工可运动微转子结构的实验过程与优化参数, 利用空间光调制器生成了不同拓扑荷的涡旋光, 研究了其传播与聚焦特性, 并用于驱动转子的顺、逆时针旋转运动。这种可控光学驱动技术在微流控、光镊技术、靶向药物运输、细胞动态行为等领域具有广阔的应用前景。
飞秒激光 空间光调制 涡旋光 光驱动 femtosecond laser spatial light modulation vortex beam light-driven 
光学 精密工程
2020, 28(3): 584
作者单位
摘要
1 西安航空学院 电子工程学院, 西安 710077
2 中国科学院西安光学精密机械研究所, 西安 710119
研究了利用数字微镜器件生成 Hadamard光调制编码模板的方法, 深入分析了利用该编码模板进行光调制的工作原理及设计中应注意的技术细节。采用原型样机光谱仪对入射激光进行编码成像实验, 光谱反演后提取图像上样本区域内少量像素点的光谱曲线, 发现其光谱峰值恰好在激光波长所在的光谱通道内, 反演后的图像中只有激光波长所在光谱通道的光谱图像有能量分布。实验结果表明运用数字微镜设计的Hadamard编码模板达到了理想的空间光调制效果。
Hadamard变换 空间光调制 数字微镜器件 光谱仪 Hadamard transform spatial light modulation digital micromirror device spectrometer 
半导体光电
2019, 40(4): 600
作者单位
摘要
中国电子科技集团公司光电研究院, 天津 300308
压缩感知(compressive sensing, CS)是近年来出现的一种新的信号获取与处理理论, 能以远低于奈奎斯特采样率对信号进行采样, 并可实现高精度的重构。首先介绍了压缩感知理论, 提出了一种基于压缩感知的非扫描激光雷达成像系统, 然后详述了系统组成及工作流程, 对关键技术进行了分析。该系统以单光子点元探测器作为微弱目标探测元件, 通过空间光调制及图像重构技术, 实现对微弱目标的超分辨率成像。最后利用OMP重构算法在MATLAB平台上进行了仿真验证, 证明了该成像系统的可行性。
压缩感知 激光雷达 空间光调制 超分辨率 单光子 compressive sensing (CS) laser radar spatial light modulation super-resolution single-photon 
光电技术应用
2018, 33(3): 25
作者单位
摘要
Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
microtube spatial light modulation Bessel beam magnetic driving 
光电工程
2017, 44(12): 1250

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!