光学 精密工程, 2020, 28 (12): 2629, 网络出版: 2021-01-19   

飞秒激光双光子聚合方法加工图案化微透镜及其成像测试

P attern ed m icrolen s p rocessed u sing tw o -photon polym erization of fem tosecond laser and its im agin g test
作者单位
1 安徽大学电气工程与自动化学院, 安徽合肥 230601
2 安徽大学电子信息工程学院, 安徽合肥 230601
3 信息材料与智能感知安徽省实验室, 安徽合肥 230601
4 中国科学技术大学精密机械与精密仪器系, 安徽合肥 230022
摘要
为改善以往图案化透镜加工工艺复杂、制造技术昂贵、图案设计方面有限制等缺点, 本文将飞秒激光双光子聚合加工技术应用于图案化微透镜的快速、高精度加工。通过球面波因子的变形设计了不同图案的微透镜, 利用飞秒激光双光子聚合加工技术在光刻胶样品中加工出图案化的微透镜, 然后将光刻胶样品置于显影液中去除未聚合部分, 得到图案化微透镜, 最后对图案化微透镜进行成像测试和光强均一化分析。将 LED光源分别置于不同图案微透镜的下方, 光线透过图案化微透镜成功聚焦出光强一致的焦点图案。实验结果表明, 使用飞秒激光双光子聚合加工可以实现灵活可控的 3D图案化微透镜结构的加工, 采用加工功率为 7 mW, 曝光时间为 2 ms, 扫描 xy步距为 0. 5 μm, z步距为 0. 8~1. 5 μm, 不仅保证了微透镜结构表面光滑, 而且实现了微透镜的快速加工。该技术在加工光学超材料、光学微器件、集成光学器件等方面具有广阔的应用前景。
Abstract
Two-photon polymerization technology for use in a femtosecond laser was used in the rapid and high-precision processing of a patterned microlens to improve the previous shortcomings, including a complex processing technology, expensive manufacturing technology, and limited pattern design. First, three-dimensional software was used to design the microlens pattern through the deformation of the spherical wave factor, and the two-photon polymerization processing technology for a femtosecond laser was used to process the patterned microlens in the photoresist sample. The sample was then placed in a developer to re. move the unprocessed area and obtain the corresponding patterned microlens. Finally, an imaging test and a light intensity homogenization analysis of the patterned microlens were carried out. An LED light source was placed below the patterned microlens, and the light was successfully focused through the patterned mi. crolens to obtain the corresponding patterns with the same light intensity. The experiment shows that the two-photon polymerization of a femtosecond laser can realize the flexible and controllable processing of a 3D microlens structure, a processing power of 7 mW, an exposure time of 2 ms, a scanning xy-step of 0. 5 μm, and a z-step of0. 8-1. 5 μm, ensuring the smooth surface of the microlens structure and realizing a rap. id microlens processing. The two-photon polymerization technology for a femtosecond laser will play an important role in the processing field such as optical metamaterials, optical microdevices, and integrated optical devices.
参考文献

[1] LIN K B, SHEN T W, SU Y H. Emergent upcon. version sustainable micro-optical trapping device[J]. Particle & Particle;Particle Systems Charac. terization, 2019, 36(7): 1900077.

[2] ZHANG T Y, LI P, YU H B, et al.. Fabrication of flexible microlens arrays for parallel super-resolution imaging[J]. Applied Surface Science, 2020, 504: 144375.

[3] 张一, 余卿, 张昆, 等.基于数字微镜器件的并行彩色共聚焦测量系统[J].光学精密工程, 2020, 28(4): 859-866. ZHANG Y, YU Q, ZHANG K, et al.. Parallel col. or confocal measurement system based on digital mi. cromirror device[J]. Optics and Precision Engineer. ing, 2020, 28(4): 859-866.(in Chinese)

[4] YANG B, ZHOU J Y, CHEN Q M, et al.. Fabrica. tion of hexagonal compound eye microlens array us. ing DMD-based lithography with dose modulation.[J]. Optics Express, 2018, 26(22): 28927.

[5] ZHAO W X, WANG Q H, WANG A H, et al.. Autostereoscopic display based on two-layer lenticu. lar lenses[J]. Optics Letters, 2010, 35(24): 4127-4129.

[6] SCHONBRUN E, STEINVURZEL P E, CRO. ZIER K B. A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array[J]. Optics Express, 2011, 19(2): 1385-1394.

[7] HU JY, LIN C P, HUANG S Y, et al.. Semi-el. lipsoid microlens simulation and fabrication for en. hancing optical fiber coupling efficiency[J]. Sens. Act. A Phys., 2008, 147(1): 93-98.

[8] XU J J, YAOW G, TIAN ZN, et al.. High curva. ture concave-convex microlens[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2465-2468.

[9] CADARSO V J, PERERA-Nú.EZ J, JACOT DESCOMBES L, et al.. Microlenses with defined contour shapes[J]. Optics Express, 2011, 19(19): 18665-18670.

[10] 胡绪瑞, 陈达, 王刚.等.利用双光子聚合在非透明基底上制备微结构[J].宁波大学学报: 理工版, 2019, 32(5): 85-90. HU X R, CHEN D, WANG G, et al.. Fabrica. tion of microstructures on non-transparent sub. strates by two-photon polymerization[J]. Journal of Ningbo University: Nature Science & Engineer. ing Edition, 2019, 32(5): 85-90.(in Chinese)

[11] 潘传鹏, 周明, 刘立鹏, 等.双光子微加工技术与应用研究[J].纳米技术与精密工程, 2004, 2(4): 278-283. PAN CH P, ZHOU M, LIU L P, et al.. Research on two-photon microfabrication technology and its application[J]. Nanotechnology and Precision En. gineering, 2004, 2(4): 278-283.(in Chinese)

[12] WU D, WU S Z, NIU L G, et al.. High numeri. cal aperture microlens arrays of close packing[J]. Applied Physics Letters, 2010, 97(3): 031109.

[13] WU D, CHEN Q D, NIU L G, et al.. 100% fill-factor Aspheric Microlens Arrays(AMLA) with sub-20-nm precision[J]. IEEE Photonics Technology Letters, 2009, 21(20): 1535-1537.

[14] WU D, NIU LG, CHEN Q D, et al.. High effi. ciency multilevel phase-type fractal zone plates[J]. Optics Letters, 2008, 33(24): 2913-2915.

[15] 杨亮.基于空间光调制器的飞秒激光并行加工技术的研究[D].合肥: 中国科学技术大学, 2015. YANG L. Research on Parallel Femtosecond La. ser Processing Technologies with Spatial Light Modulator[D]. Hefei: University of Science and Technology of China, 2015.(in Chinese)

[16] 苏亚辉, 汪金礼, 杨亮, 等.飞秒激光全息并行加工中的多焦点均一性[J].光学精密工程, 2013, 21 (8): 1936-1941. SU Y H, WANG J L, YANG L, et al.. Multifocal uniformity in femtosecond laser holographic parallel processing[J]. Optics and Precision Engineering, 2013, 21(8): 1936-1941.(in Chinese)

[17] ZHANG Z Y, ZHANG C C, HU Y L, et al.. Highly uniform parallel microfabrication using a large numerical aperture system[J]. Applied Phys. ics Letters, 2016, 109(2): 021109.

[18] 袁宏伟, 饶生龙, 吴东, 等.基于飞秒激光的可运动微结构加工与旋转驱动[J].光学精密工程, 2020, 28(3): 584-590. YUANH W, RAO SH L, WU D, et al.. Moveable microstructure machining and rotating drive based on femtosecond laser[J]. Optics and Precision Engi. neering, 2020, 28(3): 584-590.(in Chinese)

[19] 李金健, 刘一, 曲士良.飞秒激光微纳加工光纤功能器件研究进展[J].激光与光电子学进展, 2020, 57(11): 1-27. LI J J, LIU Y, QU SH L. Research progress on fi. ber functional devices fabricated by femtosecond la. ser micro-nano processing[J]. Laser & Optoelec. tronics Progress, 2020, 57(11): 1-27.(in Chinese)

[20] 史杨, 许兵, 吴东, 等.飞秒激光直写技术制备功能化微流控芯片研究进展[J].中国激光, 2019, 46(10): 9-28. SHI Y, XU B, WU D, et al.. Research progress on the preparation of functional microfluidic chips using femtosecond laser direct writing technology[J]. Chinese Journal of Lasers, 2019, 46(10): 9-28.(in Chinese)

[21] 马卓晨, 张永来, 孙洪波.飞秒激光“双三维”纳米加工制备智能微纳器件[J].科学通报, 2020(8): 1-2. MA ZH CH, ZHANG Y L, SUN H B. Fabrica. tion of intelligent micro-nano devices by femtosec. ond laser "double 3d" nanometer[J]. Science Bulle. tin, 2020(8): 1-2.(in Chinese)

[22] 张佳茹, 管迎春.超快激光制备生物医用材料表面功能微结构的现状及研究进展[J].中国光学, 2019, 12(2): 199-213. ZHANG J R, GUAN Y CH. Current situation and research progress of surface functional microstruc. ture of biomedical materials prepared by ultrafast la. ser: a review[J]. Chinese Journal of Optics, 2019, 12(2): 199-213.(in Chinese)

苏亚辉, 秦天天, 许兵, 吴东. 飞秒激光双光子聚合方法加工图案化微透镜及其成像测试[J]. 光学 精密工程, 2020, 28(12): 2629. SU Ya-hui, QIN Tian-tian, XU Bing, WU Dong. P attern ed m icrolen s p rocessed u sing tw o -photon polym erization of fem tosecond laser and its im agin g test[J]. Optics and Precision Engineering, 2020, 28(12): 2629.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!