光学学报, 2017, 37 (8): 0812002, 网络出版: 2018-09-07   

液态中交叠微球的三维纳米级位置测量方法 下载: 741次

Three-Dimensional Position Measurement Method with Nanoscale Precision for Overlapped Particles in Liquid
作者单位
1 天津大学精密仪器与光电子工程学院, 天津 300072
2 天津农学院工程技术学院, 天津 300384
引用该论文

常新宇, 曾雅楠, 雷海, 姚成文, 卢钧胜, 胡晓东. 液态中交叠微球的三维纳米级位置测量方法[J]. 光学学报, 2017, 37(8): 0812002.

Xinyu Chang, Yanan Zeng, Hai Lei, Chengwen Yao, Junsheng Lu, Xiaodong Hu. Three-Dimensional Position Measurement Method with Nanoscale Precision for Overlapped Particles in Liquid[J]. Acta Optica Sinica, 2017, 37(8): 0812002.

参考文献

[1] Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking[J]. Methods in Enzymology, 2012, 504(9): 183-200.

    Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking[J]. Methods in Enzymology, 2012, 504(9): 183-200.

[2] 沈轶. 平行大通量单分子磁力谱方法构建与生物学应用[D]. 上海: 中国科学院上海应用物理研究所, 2012: 38- 45.

    沈轶. 平行大通量单分子磁力谱方法构建与生物学应用[D]. 上海: 中国科学院上海应用物理研究所, 2012: 38- 45.

    ShenYi. High-through single-molecule magnetic force spectroscope: construction & biological application[D]. Shanghai: Shanghai Institute of Applied Physics,Chinese Academy of Sciences, 2012: 38- 45.

    ShenYi. High-through single-molecule magnetic force spectroscope: construction & biological application[D]. Shanghai: Shanghai Institute of Applied Physics,Chinese Academy of Sciences, 2012: 38- 45.

[3] Neuman K C, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nature Methods, 2008, 5(6): 491-505.

    Neuman K C, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nature Methods, 2008, 5(6): 491-505.

[4] Marki A, Ermilov E, Zakrzewicz A, et al. Tracking of fluorescence nanoparticles with nanometre resolution in a biological system: assessing local viscosity and microrheology[J]. Biomechanics and Modeling in Mechanobiology, 2014, 13(2): 275-288.

    Marki A, Ermilov E, Zakrzewicz A, et al. Tracking of fluorescence nanoparticles with nanometre resolution in a biological system: assessing local viscosity and microrheology[J]. Biomechanics and Modeling in Mechanobiology, 2014, 13(2): 275-288.

[5] Chenouard N. Smal I, de Chaumont F, et al. Objective comparison of particle tracking methods[J]. Nature Methods, 2014, 11(3): 281-289.

    Chenouard N. Smal I, de Chaumont F, et al. Objective comparison of particle tracking methods[J]. Nature Methods, 2014, 11(3): 281-289.

[6] 吕且妮, 高岩, 葛宝臻, 等. 基于霍夫变换的数字全息粒子尺寸测量[J]. 中国激光, 2009, 36(4): 940-944.

    吕且妮, 高岩, 葛宝臻, 等. 基于霍夫变换的数字全息粒子尺寸测量[J]. 中国激光, 2009, 36(4): 940-944.

    Lü Qieni, Gao Yan, Ge Baozhen, et al. Digital holographic particle sizing with Hough transform[J]. Chinese J Lasers, 2009, 36(4): 940-944.

    Lü Qieni, Gao Yan, Ge Baozhen, et al. Digital holographic particle sizing with Hough transform[J]. Chinese J Lasers, 2009, 36(4): 940-944.

[7] Arines J, Ares J. Minimum variance centroid thresholding[J]. Optics Letters, 2002, 27(7): 497-499.

    Arines J, Ares J. Minimum variance centroid thresholding[J]. Optics Letters, 2002, 27(7): 497-499.

[8] 谢湘军, 雷海, 常新宇, 等. 离焦图像的互相关匹配法测量微球三维位置研究[J]. 光学学报, 2015, 35(2): 0212002.

    谢湘军, 雷海, 常新宇, 等. 离焦图像的互相关匹配法测量微球三维位置研究[J]. 光学学报, 2015, 35(2): 0212002.

    Xie Xiangjun, Lei Hai, Chang Xinyu, et al. Three-dimensional microsphere tracking using off-focus images based on cross-correlation matching algorithm[J]. Acta Optica Sinica, 2015, 35(2): 0212002.

    Xie Xiangjun, Lei Hai, Chang Xinyu, et al. Three-dimensional microsphere tracking using off-focus images based on cross-correlation matching algorithm[J]. Acta Optica Sinica, 2015, 35(2): 0212002.

[9] Parthasarathy R. Rapid, accurate particle tracking by calculation of radial symmetry centers[J]. Nature Methods, 2012, 9(7): 724-726.

    Parthasarathy R. Rapid, accurate particle tracking by calculation of radial symmetry centers[J]. Nature Methods, 2012, 9(7): 724-726.

[10] Crocker J C, Grier D G. Microscopic measurement of the pair interaction potential of charge-stabilized colloid[J]. Physical Review Letters, 1994, 73(2): 352-355.

    Crocker J C, Grier D G. Microscopic measurement of the pair interaction potential of charge-stabilized colloid[J]. Physical Review Letters, 1994, 73(2): 352-355.

[11] 雷海, 常新宇, 谢湘军, 等. 去卷积数字全息重构的微球位置精确测量[J]. 光学学报, 2015, 35(4): 0409001.

    雷海, 常新宇, 谢湘军, 等. 去卷积数字全息重构的微球位置精确测量[J]. 光学学报, 2015, 35(4): 0409001.

    Lei Hai, Chang Xinyu, Xie Xiangjun, et al. Deconvolution in digital holographic reconstruction for high accuracy position of microsphere tracking technology[J]. Acta Optica Sinica, 2015, 35(4): 0409001.

    Lei Hai, Chang Xinyu, Xie Xiangjun, et al. Deconvolution in digital holographic reconstruction for high accuracy position of microsphere tracking technology[J]. Acta Optica Sinica, 2015, 35(4): 0409001.

[12] Latychevskaia T, Gehri F, Fink H W. Depth-resolved holographic reconstructions by three-dimensional deconvolution[J]. Optics Express, 2010, 18(21): 22527-22544.

    Latychevskaia T, Gehri F, Fink H W. Depth-resolved holographic reconstructions by three-dimensional deconvolution[J]. Optics Express, 2010, 18(21): 22527-22544.

[13] Dixon L, Cheong F C, Grier D G. Holographic deconvolution microscopy for high-resolution particle tracking[J]. Optics Express, 2011, 19(17): 16410-16417.

    Dixon L, Cheong F C, Grier D G. Holographic deconvolution microscopy for high-resolution particle tracking[J]. Optics Express, 2011, 19(17): 16410-16417.

常新宇, 曾雅楠, 雷海, 姚成文, 卢钧胜, 胡晓东. 液态中交叠微球的三维纳米级位置测量方法[J]. 光学学报, 2017, 37(8): 0812002. Xinyu Chang, Yanan Zeng, Hai Lei, Chengwen Yao, Junsheng Lu, Xiaodong Hu. Three-Dimensional Position Measurement Method with Nanoscale Precision for Overlapped Particles in Liquid[J]. Acta Optica Sinica, 2017, 37(8): 0812002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!