中国激光, 2014, 41 (6): 0606001, 网络出版: 2014-05-19  

基于高频等离子体熔融技术制备镱铝共掺石英玻璃

Yb3+/Al3+ Co-Doped Silica Glass Prepared by Melting Technology Based on High-Frequency Plasma
王超 1,2,*周桂耀 1,2,3,4韩颖 1,2夏长明 4赵原源 1,2
作者单位
1 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
2 燕山大学河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
3 燕山大学亚稳材料制备技术与科学国家重点实验室, 河北 秦皇岛 066004
4 华南师范大学微纳光子功能材料与器件重点实验室, 广东 广州 510006
摘要
利用高频等离子体粉末熔融技术成功制备出镱铝共掺石英玻璃,并对其相关机理和工艺进行研究,解决了镱铝共掺石英玻璃熔点高、难以制备的难题。该技术为拉制大尺寸和多芯掺杂光子晶体光纤提供可能,并可实现多种稀土离子单掺或共掺。通过采用辅助加热和在氧气气氛下熔融,实现了镱铝共掺石英玻璃内气泡的排除,抑制了镱离子的还原。以此玻璃为纤芯利用堆积拉丝技术拉制的镱铝共掺光子晶体光纤在1200 nm波长处的背景损耗值小于0.25 dB/m,并且以此光纤为增益介质搭建的激光系统得到了激光输出。测试结果表明该技术制备的镱铝共掺石英玻璃具有非常好的光学特性。
Abstract
In order to solve the problem, such as high melting point of Yb3+/Al3+ co-doped silica glass and being difficult to be prepared, the Yb3+/Al3+ co-doped silica glass is prepared by the powder melting technology based on the high-frequency plasma and the related theory and technology are researched. The technology provides the possibility to fabricate very large and multicore rare earth doped photonic crystal fiber (PCF), and single or multiple kinds of rare earth ion doping can be realized. The bubble in the glass is eliminated and the reduction of Yb3+ ion is inhibited by adding auxiliary heating device and using oxygen as the melting atmosphere, respectively. The Yb3+/Al3+ co-doped PCF is drawn by the stack and draw technology using the glass as the PCF core. The background attenuation value of the PCF at 1200 nm is less than 0.25 dB/m, and the laser is emitted in the laser system by using the PCF as the gain medium. The test results indicate that the Yb3+/Al3+ co-doped silica glass prepared by the technology has good optical properties.
参考文献

[1] Zheng Chao, Zhang Haitao, Yan Ping, et al.. Low repetition rate broadband high energy and peak power nanosecond pulsed Yb-doped fiber amplifier[J]. Optics & Laser Technology, 2013, 49: 284-287.

[2] Wei Tao, Tan Zhiying, Li Jianfeng, et al.. Theoretical and experimental study of the pump pulse width optimization of the Yb-doped fiber amplifier[J]. Optik, 2013, 124(16): 2459-2462.

[3] C Zheng, H T Zhang, W Y Cheng, et al.. 11-mJ pulse energy wideband Yb-doped fiber laser[J]. Opt Commun, 2012, 285(17): 3623-3626.

[4] C Larsen, M Giesberts, S Nyga, et al.. Gain-switched all-fiber laser with narrow bandwidth[J]. Optics Express, 2013, 21(10): 12302-12308.

[5] J Le Person, V Nazabal, R Balda, et al.. Optical properties of Yb3+ ions in halogeno-sulphide glasses[J]. Opt Mater, 2005, 27(11): 1748-1753.

[6] V Petit, E H Sekiya, T Okazaki, et al.. Improvement of Yb3+ doped optical fiber preforms by using MCVD method[C]. SPIE, 2008, 6998: 69980A.

[7] 李文涛, 周秦岭, 陈丹平, 等. 大模场Yb石英玻璃光纤研究进展及其在大功率光纤激光器中的应用[J]. 激光与光电子进展, 2013, 50(2): 020005.

    Li Wentao, Zhou Qinling, Chen Danping, et al.. Research progress of Yb-doped large-mode area silica glass optical fiber and its application in high-power fiber lasers[J]. Laser & Optoelectronics Progress, 2013, 50(2): 020005.

[8] Li Wentao, Zhou Qinling, Zhang Lei, et al.. Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method[J]. Chin Opt Lett, 2013, 11(9): 091601.

[9] Joona J Koponen, Laeticia Petit, Teemu Kokki, et al.. Progress in direct nanoparticle deposition for the development of the next generation fiber lasers[J]. Optical Engineering, 2011, 50(11): 111605.

[10] Martin Leich, Florian Just, Andreas Langner, et al.. Highly efficient Yb-doped silica fibers prepared by powder sinter technology[J]. Optics Letter, 2011, 36(9): 1557-1559.

[11] Joan J Montiel i Ponsoda, Lars Norin, Changgeng Ye, et al.. Ytterbium-doped fibers fabricated with atomic layer deposition method[J]. Optics Express, 2012, 20(22): 25085-25095.

[12] 西北轻工业学院. 玻璃工艺学[M]. 北京: 轻工业出版, 1982. 246.

    Northwest college of light industry. Glass Technology[M]. Beijing: Light industry press,1982. 246.

[13] J Kirchhof, S Unger, A Schwuchow, et al.. Materials for high-power fiber lasers[J]. J Non-Cryst Solids, 2006, 352(23): 2399-2403.

[14] A Langner, G Schtz, M Such, et al.. A new material for high power laser fibers[C]. SPIE, 2008, 6873: 687311.

[15] Wang Chao, Zhou Guiyao, Liu Hongzhan, et al.. Properties of non-bridging oxygen hole centers defects in Yb3+/Al3+ Co-doped photonic crystal fiber by using powder melting technology[J]. J Lightwave Technol, 2013, 31(17): 2864-2868.

[16] D C Hanna, R M Percival, I R Perry, et al.. An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 μm to 1.162 μm and three-level operation at 974 nm[J]. Journal of Modern Optics, 1990, 37(4): 517-525.

[17] H M Pask, R J Carman, D C Hanna, et al.. Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(1): 2-13.

[18] Mccumber D E. Einstein relations connecting broadband emission and absorption spectra[J]. Physical Review, 1964, 136(4A): A954-A957.

[19] 韩颖, 侯蓝田, 夏长明, 等. 镱铝共掺石英玻璃的制备及其发光特性的研究[J]. 物理学报, 2011, 60(5): 054242.

    Han Ying, Hou Lantian, Xia Changming, et al.. Investigation on the fabrication and luminescence characteristics of Yb3+ and Al3+ co-doped silicate glasses[J]. Acta Physica Sinica, 2011, 60(5): 054212.

[20] 董世蕊, 侯蓝田, 靳涛涛, 等. 掺镱硅酸盐激光玻璃的制备与光谱特性分析[J]. 光谱学与光谱分析, 2009, 29(9): 2485-2488.

    Dong Shirui, Hou Lantian, Jin Taotao, et al.. Investigation on the fabrication and spectrum properties of Yb3+-doped silicate laser glasses[J]. Spectroscopy and Spectral Analysis, 2009, 29(9): 2485-2488.

[21] 李玮楠, 丁广雷, 陆敏, 等. 掺Yb3+激光玻璃光谱特性研究[J]. 光谱学与光谱分析, 2006, 26(10): 1781-1784.

    Li Weinan, Ding Guanglei, Lu Min, et al.. Investigation on spectrum properties of Yb3+-doped laser glasses[J]. Spectroscopy and Spectral Analysis, 2006, 26(10): 1781-1784.

[22] 吴青青, 许峰, 张桂菊, 等. 掺镱锂硅酸盐的光谱及离子交换特性分析[J]. 光学学报, 2012, 32(9): 0916004.

    Wu Qingqing, Xu Feng, Zhang Guiju, et al.. Spectrum and ion-exchange properties of ytterbium-doped lithium silicate glass[J]. Acta Optica Sinica, 2012, 32(9): 0916004.

王超, 周桂耀, 韩颖, 夏长明, 赵原源. 基于高频等离子体熔融技术制备镱铝共掺石英玻璃[J]. 中国激光, 2014, 41(6): 0606001. Wang Chao, Zhou Guiyao, Han Ying, Xia Changming, Zhao Yuanyuan. Yb3+/Al3+ Co-Doped Silica Glass Prepared by Melting Technology Based on High-Frequency Plasma[J]. Chinese Journal of Lasers, 2014, 41(6): 0606001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!