红外与激光工程, 2016, 45 (12): 1233001, 网络出版: 2017-01-12   

低照度LED光下人眼瞳孔的非视觉生物效应

Non-visual biological effects of LED light to human pupil under low illumination
作者单位
华南理工大学 物理与光电学院, 广东 广州 510640
摘要
基于瞳孔收缩分析研究低照度LED光对人的非视觉效应。选择10名受测者、6种彩光LED和5种低照度, 进行瞳孔受光反射实验; 实验全程用红外视频记录仪拍摄, 由基于OpenCV开发的程序完成瞳孔大小的计算。结果显示: 在同一照度水平下, 蓝光波段光源非视觉效应最为显著, 瞳孔稳定收缩率和恢复收缩率随着光源波长向短波方向偏移而增大; 在同一光源下, 瞳孔稳定收缩率与恢复收缩率随照度加强而增大, 并且在10~70 lx间两瞳孔收缩率存在线性相关, 相关系数均大于0.95; 两瞳孔收缩率分别与生物节律因子存在线性相关, 表明用瞳孔收缩率能较好表征非视觉生物效应的大小。
Abstract
To sdudy the non-visual effect to human based on the analysis of pupil contraction under low illumination LED light, ten subjects were selected to conduct pupillary light reflex test under different conditions of six kinds LED light with different colors, five kinds of low illumination. All these tests were recorded by infrared video recorder and the pupil size was calculated by the program based on OpenCV. The result shows that steady pupil contraction rate and recovery pupil contraction rate will be larger as the migration from long wave to short wave light source under the same illumination. And the non-visual effect of blue light source is the most significant. Also, steady pupil contraction rate and recovery pupil contraction rate will be larger as the illumination increased under the same light source. And there is a linear relationship between these two pupil contraction rates under the illumination of 10-70 lx with the correlation coefficient of more than 0.95. Two pupil contraction rates have a linear relationship between circadian factor, which shows that the pupil contraction rate could well represent the degree of non-visual biological effect.
参考文献

[1] Berson D M, Dunn F A, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock[J]. Science, 2002, 295(5557): 1070-1073.

[2] Gamlin P D, McDougal D H, Pokorny J, et al. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells[J]. Vision Research, 2007, 47(7): 946-954.

[3] McDougal D H, Gamlin P D. The influence of intrinsically photosensitive retinal ganglion cells on the spectral sensitivity and response, dynamics of the human papillary light reflex[J]. Vision Research, 2010, 50(1): 72-87.

[4] Lucas R J, Peirson S N, Berson D M, et al. Measuring and using light in the melanopsin age[J]. Trends in Neurosciences, 2014, 37(1): 1-9.

[5] Bellia L, Seraceni M. A proposal for a simplified model to evaluate the circadian effects of light sources[J]. Lighting Research and Technology, 2014, 46(5): 493-505.

[6] Chang A M, Aeschbach D, Duffy J F, et al. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1232-1237.

[7] Berman S M. A new retinal photoreceptor should affect lighting practice[J]. Lighting Research and Technology, 2008, 40(4): 373-376.

[8] 徐蔚. 基于瞳孔收缩的非视觉感光系统的研究[D]. 上海: 复旦大学, 2011.

    Xu Wei. Research on non-visual photosensitive system based on pupil contraction[D]. Shanghai: Fudan University, 2011. (in Chinese)

[9] Dacey D M, Liao H W, Peterson B B, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN[J]. Nature, 2005, 433(7027): 749-754.

[10] Gooley J J, Mien I H, Hilalire M A, et al. Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans[J]. The Journal of Neuroscience, 2012, 32(41): 14242-14253.

[11] 张志佳, 张海峰, 周纯冰, 等. 采用改进Snake模型的虹膜定位方法[J]. 红外与激光工程, 2011, 40(4): 767-771.

    Zhang Zhijia, Zhang Haifeng, Zhou Chunbing, et al. Iris location method based on improved Snake[J]. Infrared and Laser Engineering, 2011, 40(4): 767-771. (in Chinese)

[12] 陈传虎, 邹德旋, 刘海宽. 应用统计距离实现虹膜定位[J]. 光学 精密工程, 2012, 20(11): 2516-2522.

    Chen Chuanhu, Zou Dexuan, Liu Haikuan. Iris location algorithm by counting distances[J]. Optics and Precision Engineering, 2012, 20(11): 2516-2522. (in Chinese)

[13] 马义德, 周丽君, 李园. 基于矢量场卷积的虹膜定位[J]. 红外与激光工程, 2014, 43(10): 3497-3503.

    Ma Yide, Zhou Lijun, Li Yuan. Iris location algorithm by vector field convolution[J]. Infrared and Laser Engineering, 2014, 43(10): 3497-3503. (in Chinese)

[14] 宋丽妍, 李俊凯, 牟同升. 以发光二极管为背光源的平板显示对人体非视觉的影响[J]. 光子学报, 2013, 42(7): 768-771.

    Song Liyan, Li Junkai, Mou Tongsheng. Non-visual effects of flat panel display with light emitting diode backlight on human[J]. Acta Photonica Sinica, 2013, 42(7): 768-771. (in Chinese)

[15] 周晓明, 邵志栋, 徐嘉彬. 不同波段LED对人体非视觉的影响[J]. 深圳大学学报理工版, 2014, 31(4): 410-414.

    Zhou Xiaoming, Shao Zhidong, Xu Jiabin. The impacts of different wave range LED on non-visual effects[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(4): 410-414. (in Chinese)

[16] 柴颖斌, 孙耀杰, 林燕丹. 低照度彩光对人眼非视觉生物效应的影响[J]. 照明工程学报, 2012, 23(3): 18-22.

    Chai Yingbin, Sun Yaojie, Lin Yandan. Non-visual biological effects of different color light under low illuminance conditions[J]. China Illuminating Engineering Journal, 2012, 23(3): 18-22. (in Chinese)

[17] 周晓明, 徐嘉彬, 邵志栋. 极低照度下彩光LED对人体心电图的影响[J]. 华南理工大学学报(自然科学版), 2015, 43(4): 138-142.

    Zhou Xiaoming, Xu Jiabin, Shao Zhidong. Effects of LED with different colors on human electrocardiogram under extremely low illumination[J]. Journal of South China University of Technology(Natural Science Edition), 2015, 43(4): 138-142. (in Chinese)

罗达, 张惠平, 周晓明. 低照度LED光下人眼瞳孔的非视觉生物效应[J]. 红外与激光工程, 2016, 45(12): 1233001. Luo Da, Zhang Huiping, Zhou Xiaoming. Non-visual biological effects of LED light to human pupil under low illumination[J]. Infrared and Laser Engineering, 2016, 45(12): 1233001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!