激光生物学报, 2019, 28 (4): 296, 网络出版: 2019-09-27   

模板法金纳米簇的制备及其在生物分子检测中的应用

Preparation of Gold Nanoclusters by Template Method and Applications in Biomolecule Biosensing
作者单位
湖南农业大学食品科学技术学院, 长沙 410128
摘要
金纳米簇(AuNCs)作为一种新型荧光纳米材料, 是由几个到约一百个金原子组成的分子聚集体, 因制备简单、光学性质优异以及毒性低等特性, 近年来在生物传感领域得到了广泛应用。本文首先对以巯基化合物、树枝状化合物、多肽和蛋白质、寡核苷酸DNA等为模板制备AuNCs的模板法及其优点进行阐述, 对AuNCs的紫外吸收、荧光及电化学性质进行介绍, 之后重点总结基于荧光AuNCs的生物传感器在生物大分子及小分子检测中的应用, 最后对AuNCs应用于生物传感领域所面临的挑战进行分析, 并对其应用前景进行展望。
Abstract
As a new type of fluorescent nanomaterial, gold nanoclusters (AuNCs) are molecular aggregates composed of several to about one hundred gold atoms. Due to its simple preparation, excellent optical properties and low toxicity, AuNCs have been widely used in the field of biosensing in recent years. This review first briefly introduces the commonly used template method and its advantages for the preparation of AuNCs using sulfhydryl compounds, dendrimer, peptides and proteins, oligonucleotide DNA, etc. as templates. This review describes the UV absorption, fluorescence and electrochemical properties of AuNCs. After that, the application of fluorescent AuNCs-based biosensors in the detection of biomacromolecules and small molecules is summarized. Finally, the challenges of AuNCs in the field of biosensing are analyzed and their applications are prospected.
参考文献

[1] CLARK L C J, LYONS C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Annals of the New York Academy of Sciences, 1962, 102(1): 29-45.

[2] ZHENG J, NICOVICH P R, DICKSON R M. Highly fluorescent noble-metal quantum dots[J]. Annual Review of Physical Chemistry, 2007, 58(1): 409-431.

[3] XU H, SUSLICK K S. Water-soluble fluorescent silver nanoclusters[J]. Advanced Materials, 2010, 22(10): 1078-1082.

[4] OU G Z, ZHAO J, CHEN P, et al. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions[J]. Analytical and Bioanalytical Chemistry, 2018, 410(10): 2485-2498.

[5] NASARUDDIN R R, CHEN T K, YAN N, et al. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters[J]. Coordination Chemistry Reviews, 2018, 368(1): 60-79.

[6] 王绪美. 荧光纳米材料的合成制备、性质表征和应用研究[D].长春: 吉林大学, 2012.

    WANG Xumei. The synthesis, characterization and applications of fluorescence nanomaterial[D].Changchun:Jilin University, 2012.

[7] ZHENG Y K, LAI L M, LIU W W, et al. Recent advances in biomedical applications of fluorescent gold nanoclusters[J]. Advances in Colloid and Interface Science, 2017, 242: 1-16.

[8] DANIELS M J, WANG Y M, LEE M Y, et al. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2[J]. Science, 2004, 306(5697): 876-879.

[9] BISELLI M, CONTI F, GRAMENZI A, et al. A new approach to the use of alpha-fetoprotein as surveillance test for hepatocellular carcinoma in patients with cirrhosis[J]. British Journal of Cancer, 2015, 112(1): 69-76.

[10] CHANG H Y, TSENG Y T, YUAN Z Q. The effect of ligand-ligand interactions on the formation of photoluminescent gold nanoclustersembedded in Au(I)-thiolate supramalecules[J]. Physical Chemistry Chemical Physics, 2017, 19(19): 12085-12093.

[11] ZHANG X D, LUO Z T, CHEN J, et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance[J]. Scientific Reports, 2015, 5: 1-7.

[12] SHANG L, AZADFAR N, STOCKMAR F, et al. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging[J]. Small, 2011, 7(18): 2614-2620.

[13] SUN J, YUE Y, WANG P, et al. Facile and rapid synthesis of water-soluble fluorescent gold nanoclusters for sensitive and selective detection of Ag+[J]. Journal of Materials Chemistry C, 2013, 1(5): 908-913.

[14] DENG H H, WANG F F, SHI X Q, et al. Water-soluble gold nanoclusters prepared by protein-ligand interaction as fluorescent probe for real-time assay of pyrophosphatase activity[J]. Biosensors & Bioelectronics, 2016, 83: 1-8.

[15] ZHENG J, PETTY J T, DICKSON R M. High quantum yield blue emission from water-soluble Au8 nanodots[J]. Journal of the American Chemical Society, 2003, 125(26): 7780-7781.

[16] LIU C P, WU T H, LIU C Y, et al. Interactions of nitroxide redicals with dendrimer-entrapped Au-8-clusters:a fluorescent nanosensorfor intracellular imaging of ascorbic acid[J]. Journal of Materials Chemistry B, 2015, 3(2): 191-197.

[17] XIE J P, ZHENG Y G, YING J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. Journal of the American Chemical Society, 2009, 131(3): 888-889.

[18] XU Y L, SHERWOOD J, QIN Y, et al. The role of protein characteristics in the formation and fluorescence of Au nanoclusters[J]. Nanoscale, 2014, 6(3): 1515-1524.

[19] YARRAMALA D S, BAKSI A, PRADEEP T, et al. Green synthesis of protein-protected fluorescent gold nanoclusters (AuNCs):reducing the size of AuNCs by partially occupying the Ca2+ site by La3+ in Apo-alpha-Lactalbumin[J]. ACS Sustainable Chemisrty&Engineering, 2017, 5(7): 6064-6069.

[20] SHEN R, LIU P P, ZHANG Y Q, et al. Sensitive detection of single-cell secreted H2O2 by integrating a microfluidic droplet sensor and Au nanoclusters[J]. Analytical Chemistry, 2018, 90(7): 4478-4484.

[21] KENNEDY T A C, MACLEAN J L, LIU J W. Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH[J]. Chemical Communications, 2012, 48(54): 6845-6847.

[22] LIU G Y, SHAO Y, WU F, et al. DNA-hosted fluorescent gold nanoclusters:sequence-dependent formation[J]. Nanotechnology, 2013, 24(1): 1-7.

[23] YU Y, LUO Z T, YU Y, et al. Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters[J]. ACS Nano, 2012, 6(9): 7920-7927.

[24] HAN J, ZHUO Y, CHAI Y Q, et al. A signal amplification strategy using the cascade catalysis of gold nanoclusters and glucose dehydrogenase for ultrasensitive detection of thrombin[J]. Biosensors & Bioelectronics, 2013, 50: 161-166.

[25] HU L Z, HAN S, PARVEEN S, et al. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters[J]. Biosensors & Bioelectronics, 2012, 32(1): 297-299.

[26] DIAZ S A, HASTMAN D A, MEDINTZ I L, et al. Understanding energy transfer with luminescent gold nanoclusters:a promising new transduction modality for biorelated applications[J]. Journal of Materials Chemistry B, 2017, 5(39): 7907-7926.

[27] SHIANG Y C, HUANG C C, CHEN W Y, et al. Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging[J]. Journal of Materials Chemsitry, 2012, 22(26): 12972-12982.

[28] BIAN R X, WU X T, CHAI F, et al. Facile preparation of fluorescent Au nanoclusters-based test papers for recyclable detection of Hg2+ and Pb2+[J]. Sensors and Actuators B-Chemical, 2017, 241: 592-600.

[29] CUI M L, ZHAO Y, SONG Q J. Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters[J]. Trac-Trends in Analytical Chemistry, 2014, 57: 73-82.

[30] ZHENG J, ZHANG C W, DICKSON R M. Highly fluorescent, water-soluble, size-turnable gold quantum dots[J]. Physical Review Letter, 2004, 93(7): 1-4.

[31] LUO Z T, YUAN X, YU Y, et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@ Au(I)-thiolate core-shell nanoclusters[J]. Journal of the American Chemistry Society, 2012, 134(40): 16662-16670.

[32] VERICAT C, VELA M E, BENITEZ G, et al. Self-assembled monolayers of thiols and dithiols on gold:new challenges for a well-known system[J]. Chemical Society Reviews, 2010, 39(35): 1805-1834.

[33] LI L L, LIU H Y, SHEN Y Y, et al. Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine[J]. 2011, 83(3): 661-665.

[34] TRIULZI R C, MICIC M, GIORDANI S, et al. Immunoassay based on the antibody-conjugated PAMAM-dendrimer-gold quantum dot complex[J]. Chemical Communications, 2006, 48(48): 5068-5070.

[35] ZHAO Q, HUANG H W, ZHANG L Y, et al. Strategy to fabricate naked-eye readout ultrasensitive plasmonic nanosensor based on enzyme mimetic gold nanoclusters[J]. Analytical Chemistry, 2016, 88(2): 1412-1418.

[36] QIN L, HE X W, CHEN L X, et al. Turn-on fluorescent sensing of glutathione S-transferase at near-infrared region based on FRET between gold nanoclusters and gold nanorods[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5965-5971.

[37] LIU Q, LI N, WANG M K, et al. A label-free fluorescent biosensor for the detection of protein kinase activity based on gold nanoclusters/graphene oxide hybrid materials[J]. Analytica Chimica Acta, 2018, 1013: 71-78.

[38] DRAG M, SALVESEN G S. Emerging principles in protease-based drug discovery[J]. Nature Reviews Drug Discovery, 2010, 9(9): 690-701.

[39] FRIEDL P, WOLF K. Tube travel:the role of proteases in individual and collective a cancer cell invasion[J]. Cancer Research, 2008, 68(18): 7247-7249.

[40] WANG Y C, WANG Y, ZHOU F B, et al. Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases[J]. Small, 2012, 8(24): 3769-3773.

[41] SUN J, YANG X R. Gold nanoclusters-Cu2+ ensemble-based fluorescence turn-on and real-time assay for acetycholinesterase activity and inhibitor screening[J]. Biosensors & Bioelectronics, 2015, 74: 177-182.

[42] RUTTEN C J, VELTHUIS A G J. Invited review:sensors to support health management on dairy farms[J]. Journal of Dairy Science, 2013, 96(4): 1928-1952.

[43] SONG Y J, WANG Y C, QIN L D. A multistage volumetric bar chart chip for vissualized quantification of DNA[J]. Journal of the American Chemical Society, 2013, 135(45): 16785-16788.

[44] WEST A L, GRIEP M H, COLE D P, et al. DNase 1 retains endodeoxyribonuclease activity following gold nanocluster synthesis[J]. Analytical Chemistry, 2014, 86(15): 7377-7382.

[45] WANG W, BAO T, ZENG X, et al. Ultrasensitive electrochemical DNA biosensor based on functionalized gold clustes/graphene nanohybrids coupling with exonuclease III-aided cascade target recycling[J]. Biosensors & Bioelectronics, 2017, 91: 183-189.

[46] XU S H, NIE Y Y, JIANG L P, et al. Polydopamine nanosphere/gold nanocluster (Au NC)-based nanoplatform for dual color simultaneous detection of multiple tumor-related mircroRNAs with DNase-I-assisted target recycling amplification[J]. Analytical Chemistry, 2018, 90(6): 4039-4045.

[47] HOSSEINI M, AHMADI E, BORGHEI Y S, et al. A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA-gold nanocluster[J]. Methods and Applications in Fluorescence, 2017, 5(1): 1-8.

[48] ZHANG A, NEUMEYER J L, BALDESSARINI R J. Recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders[J]. Chemical Reviews, 2007, 107(1): 274-302.

[49] DAWSON T M, DAWSON V L. Molecular pathways of neurodegeneration in Parkinson’s disease[J]. Science, 2003, 302(5646): 819-822.

[50] TAO Y, LIN Y H, REN J S, et al. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters[J]. Biosensors & Bioelectronics, 2013, 42: 41-46.

[51] YANG D Q, LUO M C, DI J W, et al. Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid[J]. Microchimica Acta, 2018, 185(6): 1-7.

[52] MENG F F, YIN H Q, LI Y, et al. One-step synthesis of enzyme-stabilized gold nanoclusters for fluorescent ratiometric detection of hydrogen peroxide, glucose and uric acid[J]. Microchemical Journal, 2018, 141: 431-437.

魏伟, 赵倩, 石星波. 模板法金纳米簇的制备及其在生物分子检测中的应用[J]. 激光生物学报, 2019, 28(4): 296. WEI Wei, ZHAO Qian, SHI Xingbo. Preparation of Gold Nanoclusters by Template Method and Applications in Biomolecule Biosensing[J]. Acta Laser Biology Sinica, 2019, 28(4): 296.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!