中国激光, 2011, 38 (9): 0905008, 网络出版: 2011-08-19   

金属膜衬底上亚波长介质光栅结构的特性及传感应用

Characteristic of Subwavelength Dielectric Grating with Metal Layer and Its Sensing Applications
作者单位
1 宁波大学理学院, 浙江 宁波 315211
2 江苏大学机械工程学院, 江苏 镇江 212013
摘要
提出亚波长介质光栅金属膜石英玻璃衬底结构,根据等效介质理论该结构可等效为由金属光栅包覆层构成的单面金属包覆波导,在入射波长和入射角满足一定条件时,发生导模共振(GMR)从而产生光波全吸收现象。根据严格耦合波分析(RCWA)理论进行数值分析发现,等效波导中的TM1 GMR峰尖锐,并且对光栅包覆层的折射率变化非常敏感,角度灵敏度为127.87\O /RIU(RIU为折射率单位),波长灵敏度为409.35 nm/RIU,在很大的折射率范围内线性度良好。与全介质GMR传感器和光栅型表面等离子体共振(SPR)传感器相比,该结构通过GMR实现较高灵敏度的同时,其较窄的共振峰使得检测精度更高。
Abstract
The subwavelength dielectric grating-metal structure with a quartz glass substrate is proposed. It can be seen as a waveguide which is composed of metal layer, grating and superstrata according to the equivalent medium theory. With proper incident angles and light wavelengths, the total resonance absorption occurs. The resonance spectra of total absorption are analyzed using rigorous coupled-wave analysis (RCWA) method. The results show that the peak of TM1 mode of the waveguide is very sharp and sensitive to variation of refractivity of the superstrata. The angle sensitivity and wavelength sensitivity are 127.87\O /RIU and 409.35 nm/RIU, respectively, and the linearity between the resonance peaks and the refractivity of superstrata is good in a large range of refractive index of superstrata. Compared with guide-mode sensors of all dielectric and grating-type surface plasmon resonance sensors, the proposed structure can realize high sensitivity and the narrow resonance peaks can provide high detection precision.
参考文献

[1] A. Sharon, D. Rosenblatt, A. A. Friesem. Resonant grating-waveguide structures for visible and near-infrared radiation[J]. J. Opt. Soc. Am. A, 1997, 14(11): 2985~2993

[2] S. S. Wang, R. Magnusson. Theory and applications of guided-mode resonance filters[J]. Appl. Opt., 1993, 32(14): 2606~2613

[3] 周传宏, 王磊, 聂娅 等. 介质光栅导模共振耦合波分析[J]. 物理学报, 2002, 51(1): 68~73

    Zhou Chuanhong, Wang Lei, Nie Ya et al.. The rigorous coupled-wave analysis of guided-mode resonance in dielectric gratings[J]. Acta Physica Sinica, 2002, 51(1): 68~73

[4] W. Liu, Z. Lai, H. Guo et al.. Guided-mode resonance filters with shallow grating[J]. Opt. Lett., 2010, 35(6): 865~867

[5] 王振华, 吴永刚, 桑田 等. 带缓冲层的导模共振滤光片反射光谱特性[J]. 光学学报, 2008, 28(7):1425~1428

    Wang Zhenhua, Wu Yonggang, Sang Tian et al.. Reflection spectra properties of guided-mode resonance filters with buffer layer[J]. Acta Optica Sinica, 2008, 28(7): 1425~1428

[6] I. Abdulhalim. Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter[J]. Chin. Opt. Lett., 2009, 7(8): 667~670

[7] 张大伟, 王琦, 朱亦鸣 等. 方位角调谐的反射窄带导模共振滤光片设计[J]. 中国激光, 2010, 37(4): 950~953

    Zhang Dawei, Wang Qi, Zhu Yiming et al.. Design of guided mode resonant filters tuned by azimuthal angle[J]. Chinese J. Lasers, 2010, 37(4): 950~953

[8] A. Szeghalmi, E. B. Kley, M. Knez. Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors[J]. J. Phys. Chem. C, 2010, 114(49): 21150~21157

[9] A. Sharon, D. Rosenblatt, A. A. Friesem et al.. Light modulation with resonant grating-waveguide structures[J]. Opt. Lett., 1996, 21(19): 1564~1566

[10] 张大伟, 袁丽萌, 黄元申 等. 导模共振滤光片表面镀膜对其物理特性的影响[J]. 中国激光, 2009, 36(11): 3060~3063

    Zhang Dawei, Yuan Limeng, Huang Yuanshen et al.. Influence of film on the characteristics of sub-wave grating[J]. Chinese J. Lasers, 2009, 36(11): 3060~3063

[11] J. Wang, Y. Jin, J. Ma et al.. Study on guided-mode resonance characteristic of multilayer dielectric grating with broadband and wide using-angle[J]. Chin. Phys. B, 2010, 19(5): 054202

[12] H. Libardi, H. P. Grieneisen. Guided-mode resonance absorption in partly oxidized thin silver films[J]. Thin Solid Films, 1998, 333(1-2): 82~87

[13] A. Sharon, S. Glasberg, D. Rosenblatt et al.. Metal-based resonant grating waveguide structures[J]. J. Opt. Soc. Am. A, 1997, 14(3): 588~595

[14] B. Choi, Y. Kanamori, K. Hane. Phase sensitive photodiode based on guided resonant absorption[J]. Appl. Phys. Lett., 2007, 90(24): 11141~11143

[15] V. M. Fitio, Y. V. Bobitski. Resonance effects in a dielectric grating; total absorption of electromagnetic waves by a dielectric grating on metal system[J]. J. Opt. A: Pure Appl. Opt., 2004, 6(10): 943~951

[16] A. D. Rakic, A. B. Djurisic, J. M. Elazar et al.. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Appl. Opt., 1998, 37(22): 5271~5283

[17] D. L. Brundrett, E. N. Glytsis, T. K. Gaylord. Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs[J]. Appl. Opt., 1994, 33(13): 2695~2706

[18] M. Foresti, L. Menez, A. V. Tishchenko. Modal method in deep metal-dielectric gratings: the decisive role of hidden modes[J]. J. Opt. Soc. Am. A, 2006, 23(10): 2501~2508

[19] M. G. Moharam, E. B. Grann, D. A. Pommet. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. J. Opt. Soc. Am. A, 1995, 12(5): 1068~1076

[20] A. V. Whitney, J. W. Elam, S. Zou et al.. Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition[J]. J. Phys. Chem. B, 2005, 109(43): 20522~20528

[21] A. Karabchevsky, O. Krasnykov, I. Abdulhalim et al.. Metal grating on a substrate nanostructure for sensor applications[J]. Photon. Nanostruct.: Fundam. Appl., 2009, 7(4): 170~175

[22] A. de Leebeeck, L. K. S. Kumar, V. de Lange et al.. On-chip surface-based detection with nanohole arrays[J]. Anal. Chem., 2007, 79(11): 4094~4100

马伟涛, 周骏, 黄水平, 苑红伟. 金属膜衬底上亚波长介质光栅结构的特性及传感应用[J]. 中国激光, 2011, 38(9): 0905008. Ma Weitao, Zhou Jun, Huang Shuiping, Yuan Hongwei. Characteristic of Subwavelength Dielectric Grating with Metal Layer and Its Sensing Applications[J]. Chinese Journal of Lasers, 2011, 38(9): 0905008.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!