光学技术, 2023, 49 (6): 664, 网络出版: 2023-12-05  

熔融石英玻璃飞秒激光微纳加工研究

Research of femtosecond laser micronano processing of fused quartz glass
作者单位
北京理工大学 光电学院 “复杂环境智能感测技术”工信部重点实验室, 北京 100081
摘要
熔融石英玻璃因具有耐热性高、热膨胀系数低、绝缘性能好等优点, 广泛应用于航空航天、微光学元件、**等领域, 并对其加工精度和表面质量提出了更高的要求。由于飞秒激光具有“冷加工”的特点, 因此在熔融石英玻璃微纳加工方面展现出独特优势。采用波长为1030nm、重复频率为100kHz、脉宽为290fs的飞秒激光对熔融石英玻璃进行加工, 确定了不同物镜下熔融石英玻璃的损伤阈值, 研究了不同物镜下的激光功率、扫描速度、离焦量、扫描次数对加工线槽的影响, 使用逐层叠加加工的方法在低功率下得到了高深宽比(4∶1)的线槽, 并且提高加工线槽的宽度与深度的可控性, 可以在较薄熔融石英玻璃(200μm)上进行微纳加工。
Abstract
Fused quartz glass is widely used in aerospace, microoptical components, military and other fields because of its high heat resistance, low thermal expansion coefficient, good insulation properties, and so on. Higher requirements are put forward for its machining precision and surface quality. Because femtosecond laser has the characteristic of "cold processing", it has shown unique advantages in the micro-nano processing of fused quartz glass. Fused quartz glass was processed by femtosecond laser with wavelength of 1030nm, repetition frequency of 100kHz and pulse width of 290fs. The damage threshold of fused quartz glass under different objective lenses was determined. The effects of laser power, scanning speed, defocus and scanning times under different objective lenses on the machining line groove were studied. With the method of layer-by-layer superposition machining, the groove with the ratio of height to width (4∶1) was obtained at low power, and the width and depth of the groove were improved, and the micro-nano machining could be carried out on the thinner fused quartz glass (200μm).
参考文献

[1] Saeed A, Adewuyi S O, Ahmed H A M, et al. Electrical and dielectric properties of the natural calcite and quartz[J]. Silicon,2022,14(10):5265-5276.

[2] Zhang P, Chen L, Wang F, et al. A high precision scheme for micro-channel processing in quartz glass using femtosecond laser[J]. Microwave and Optical Technology Letters,2017,59(8):1993-2000.

[3] Youn S W, Takahashi M, Goto H, et al. Microstructuring of glassy carbon mold for glass embossing-Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining[J]. Microelectronic Engineering,2006,83(11-12):2482-2492.

[4] Zhang Y, Dong H, Li Q, et al. Double-layer metal mesh etched by femtosecond laser for high-performance electromagnetic interference shielding window[J]. RSC Advances,2019,9(39):22282-22287.

[5] Li B, Li C, Zhao Y, et al. Deep reactive ion etching of Z-Cut Alpha quartz for MEMS resonant devices fabrication[J]. Micromachines (Basel),2020,11(8):724.

[6] 杜秀蓉, 宋学富, 孙元成, 等. 半球谐振陀螺用石英玻璃性能及湿法刻蚀特性[J]. 导航定位与授时,2019,6(06):27-32.

[7] Xie X, Zhou C, Wei X, et al. Laser machining of transparent brittle materials: from machining strategies to applications[J]. Opto-Electronic Advances,2019,2(1):18001701-18001713.

[8] Lin B, Jiang X, Li S, et al. Mechanism of material removal by fixed abrasive lapping of fused quartz glass[J]. Journal of Manufacturing Processes,2019,46:279-285.

[9] Schmitt J, Meier A, Wallrabe U, et al. Reactive ion etching (CF4/Ar) and ion beam etching of various glasses for diffractive optical element fabrication[J]. International Journal of Applied Glass Science,2018,9(4):499-509.

[10] Khan M J, Tsukamoto T, Al Farisi M S, et al. Fabrication method of micromachined quartz glass resonator using sacrificial supporting structures[J]. Sensors and Actuators A: Physical,2020,305:111922.

[11] 张伟锋. 石英MEMS传感器湿法刻蚀工艺及设备制造技术研究[J]. 电子工业专用设备,2020,49(02):29-33.

[12] 李佳群, 闫剑锋, 李欣, 等. 透明介质材料的超快激光微纳加工研究进展[J]. 中国激光,2021,48(02):307-321.

[13] 杨雪. 飞秒激光加工玻璃微结构的机理与工艺参数研究[D]. 天津: 天津工业大学,2021.

[14] Kotz F, Risch P, Arnold K, et al. Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass[J]. Nat Commun,2019,10(1):1439.

[15] Wang F, Liu M, Huo X, et al. Using femtosecond laser processing quartz glass microchannel sample cell[J]. Microwave and Optical Technology Letters,2019,61(9):2225-2233.

[16] Lv J, Stoian R, Cheng G, et al. Index modulation embedded in type i waveguide written by femtosecond laser in fused silica[J]. Micromachines,2021,12(12):1579.

[17] Xiao G, He Y, Liu S, et al. Laser processing of micro/nano biomimetic structures[J]. Micro & Nano Letters,2021,16(6):327-335.

[18] Gan Z, Cao Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9nm feature size[J]. Nature Communications,2013,4(1):2061.

[19] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nat Mater,2002,1(4):217-224.

[20] Butkute· A, Jonuauskas L. 3D Manufacturing of glass microstructures using femtosecond laser[J]. Micromachines (Basel),2021,12(5):499.

[21] Boyd R W. Optically induced damage and multiphoton absorption[M]. Nonlinear Optics,2008.

[22] 尹鹏宇. 超快激光加工透明脆性材料工艺研究[D]. 武汉: 华中科技大学, 2016.

[23] Ben-Yakar A, Byer R L. Femtosecond laser ablation properties of borosilicate glass[J]. Journal of Applied Physics,2004,96(9):5316-5323.

[24] Jian D, Hou Z, Wang C, et al. Fabrication of fused silica microstructure based on the femtosecond laser[J]. AIP Advances,2021,11(9):95218.

[25] Nieto D, Arines J, O'Connor G M, et al. Single-pulse laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass for pulse widths of 500fs,10ps,20ns[J]. Appl Opt,2015,54(29):8596-8601.

苏天颜, 刘超, 全宏升, 徐可米. 熔融石英玻璃飞秒激光微纳加工研究[J]. 光学技术, 2023, 49(6): 664. SU Tianyan, LIU Chao, QUAN Hongsheng, XU Kemi. Research of femtosecond laser micronano processing of fused quartz glass[J]. Optical Technique, 2023, 49(6): 664.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!