光子学报, 2017, 46 (6): 0616006, 网络出版: 2017-06-27  

典型金属纳米结构的电子能量损失谱研究

Research on Electron Energy Loss Spectroscopy of Typical Metal Nanostructures
作者单位
安徽大学 计算智能与信号处理教育部重点实验室, 合肥 230039
摘要
利用格林函数推导出金属纳米结构电子能量损失谱的计算公式,基于时域有限差分方法对几种典型的结构进行建模仿真,数值模拟运动电荷和结构的距离、液晶环境材料对电子能量损失谱的调节作用.仿真结果表明: 当增加电子与纳米结构的距离时,电子能量损失谱谱峰降低; 当添加液晶材料或各向同性衬底材料时,电子能量损失谱的峰值发生明显红移,但液晶的光轴倾角改变对峰值的调制作用有限.通过计算电子能量损失谱研究金属纳米结构表面等离子激元共振特性,为高度复杂的等离子体激元纳米结构的设计提供了理论基础.
Abstract
The formula of electron energy loss spectroscopy of metal nanostructures was deduced by Green function. Several typical structural systems were simulated by finite difference time-domain method. The regulating effects of the distance between the moving charge and the structure, and the liquid crystal environment on the electron energy loss spectrum were numerical simulated. The simulation results show that the electron energy loss spectral peak decreases when the distance between electron and nanostructure is increased. When the liquid crystal material or isotropic substrate material is added, the peak value of electron energy loss spectrum is redshift,but with the tilt angle of the optical axis changes, the modulation effect is limited. The surface plasmon resonance on metal nanoparticles can be studied by calculating the electron energy loss spectrum, which provides a basis theoretical for the design of highly complex plasmonic nanostructures.
参考文献

[1] 朱永法. 电子能量损失谱(EELS)[M].北京: 清华大学, 2005.

    ZHU Yong-fa. Electron Energy Loss Spectroscopy(EELS)[M]. Beijing: Tsinghua University ,2005

[2] HILLIER J, BAKER R F. Microanalysis by means of electrons[J]. Journal of Applied Physics, 1944, 15(9):663-675.

[3] GARCIA F J. Optical excitations in electron microscopy[J]. Reviews of Modern Physics, 2010, 82: 209-276.

[4] RITCHIE R H. Plasma losses by fast electrons in thin films[J]. Physical Review, 1957:106-874.

[5] 杨卫国,章晓中,袁俊.一种由电子能量损失谱计算过渡金属电子数的优化方法[J].物理学报,2006,55(7):3413-3419.

    YANG W G, ZHANG X Z, YUAN J. Optimization of the method to measure d electron occupancy in transition elements from electron energy loss spectrum[J].Acta Physica Sinica, 2006,55(7):3413-3419

[6] LEE K S, EL-SAYED M A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition[J]. Journal of Physical Chemistry B, 2006,111 (39): 19220-19225.

[7] 魏来,李芳, 周剑心.基于表面等离子体激元的纳米激光器设计[J].光子学报,2016,46(10),10141004.

    WEI Lai, LI Fang, ZHOU Jian-xin. Design of surface plasmon polariton nano-lase[J].Acta Optica Sinica, 2016,46(10),10141004

[8] BARROW S J, ROSSOUW D, FUNSTON A M, et al. Mht anapping brigd dark modes in gold nanoparticle chains using electron energy loss spectroscopy[J]. Nano Letter, 2007, 40: 3799-3808.

[9] KOH A L, BAO K, KHAN I, SMITH W E, et al. Electron Energy-Loss Spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes[J]. ACS Nano,2009,3(10): 3015-3022.

[10] HOHENESTER U. Simulating electron energy loss spectroscopy with the MNPBEM toolbox[J]. Computer. Physical Communication, 2014, 185(3): 1177-1178.

[11] REED N W, CHEN J M, MACDONALD N C, et al. Fabrication and STEM/EELS measurements of nanometer-scalesilicon tips and filaments[J]. Physical Review B, 1999, 60: 5641.

[12] MATYSSEK C,NIEGEMANN J, HERGERT W, et al. Computing electron energy loss spectra with the discontinuous Galerkin time domain method[J]. Photonics and Nanostructures-Fundamentals and Applications, 2011, 9: 367-373.

[13] YANG C, MANJAVACAS A, LARGE N, et al. Electron energy-loss spectroscopy calculation in finite-difference time-domain package[J]. ACS Photonics,2015,2:369-375.

[14] BIGELOW N, VASCHILLO A, CAMDEN J. P, et al. Signatures ofFano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers[J]. ACS Nano, 2013, 7(5): 4511-4519.

[15] NOVOTNY L, HECHT B. Principles of nano-optics[M]. New York:Cambridge University Press ,2006.

[16] GARCIA DE ABAJO F J, HOWIE A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics[J]. Physical Review B, 2002, 65:115418.

[17] WANG H, ALEXANDRE V. Tunability of LSPR using gold nano-particles embedded in a liquid crystal cell[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2014,146:492-498.

[18] EMMANOUIL E, KRIEZIS S J. Light wave propagation in liquid crystal displays by the 2D finite difference time domain method[J]. Optics Communications, 2000, 177: 69-77.

[19] 葛德彪,闫玉波.电磁场时域有限差分法[M].西安: 西安电子科技大学出版社,2005.

    GE De-bao, YAN Yu-bo . Finite-difference time-domain method for electromagnetic waves[M]. Xi′an:Xi′an Electronic Sience &Technology University Press, 2005.

[20] BRENGER J P. Perfectly Matched Layer (PML) for computational electromagnetics[M]. Synthesis Lectures on Computational Electro-magnetic, 2007.

王丽华, 李小飞, 黄志祥, 吴先良. 典型金属纳米结构的电子能量损失谱研究[J]. 光子学报, 2017, 46(6): 0616006. WANG Li-hua, LI Xiao-fei, HUANG Zhi-xiang, WU Xian-liang. Research on Electron Energy Loss Spectroscopy of Typical Metal Nanostructures[J]. ACTA PHOTONICA SINICA, 2017, 46(6): 0616006.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!