光学 精密工程, 2016, 24 (8): 1834, 网络出版: 2016-10-19   

采用玻尔兹曼统计法分析光阱刚度的测量精度

Analysis of stiffness measurement precision of optical trap with Boltzmann statistics method
作者单位
中国科学技术大学 精密机械与精密仪器系, 安徽 合肥 230027
摘要
考虑高精度的光阱刚度测量是光阱力测量的关键, 本文提出了采用玻尔兹曼统计法来分析光阱刚度的测量精度。首先, 描述了实验室搭建的近红外光镊系统, 并将其搭建在暗室中的气垫平台上, 以便隔离光干扰和振动干扰。然后, 用四象限光电探测器探测被光镊捕获的微球向后散射的光, 并选用与溶液黏度无关的玻尔兹曼统计法计算样品池底面附近的光阱刚度。最后,分析和讨论了溶液温度的变化、四象限光电探测器的灵敏度、采样频率以及采样时间对光阱刚度测量精度的影响。理论分析及实验计算显示: 溶液温度的变化对光阱刚度的测量影响很小, 但四象限光电探测器的灵敏度对光阱刚度测量精度影响较大。考虑采样的完整性和数据处理速度, 采样频率通常取为被捕获颗粒拐角频率的5~10倍。对于本文搭建的近红外光镊测量系统, 采样时间取为1~7 s时, 可以保证高精度地测量光阱刚度。
Abstract
The stiffness measurement precision of an optical trap is a key in optical force measurement, so this paper proposes a method based on Boltzmann statistics to analyze the stiffness measurement precision of the optical trap. Firstly, a near infrared optical tweezer was introduced and it was built on an air cushion platform in a dark room to isolate light interference and vibration interference. Then, a quadrant photodiode was used to detect the backscatter light of a microsphere captured by the tweezer and the Boltzmann statistics method having no relation with solution viscosity was adopted to calculate the optical trap stiffness near the bottom surface of the sample cell. Finally, the influences of the solution temperature, the sensitivity of the quadrant photodiode, sampling frequency, and the sampling time on the accuracy of the optical trap stiffness measurement were analyzed and discussed. Theoretical analysis and practical calculation results indicate that the solution temperature has a little effect on the measurement, but the sensitivity of the quadrant photodiode influences on the measurement precision greatly. In consideration of complete sampling and higher data processing speeds, the sampling frequency is set 5 to 10 times as great as the knee frequency of the optically trapped microsphere. For the measurement setup proposed in this paper, the sampling time is set in the range 1-7 s, which ensures the higher measurement precision of the optical trap.
参考文献

[1] ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al.. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.

[2] 翟晓敏, 黄文浩. 光镊驱动微转子[J].光学 精密工程, 2009, 17(6): 1467-1472.

    ZHAI X M, HUANG W H. Driving microrotor by using optical tweezers[J]. Opt. Precision Eng., 2009, 17(6): 1467-1472. (in Chinese)

[3] 闫树斌, 赵宇, 杨德超, 等. 基于近场光学理论光镊的研究进展[J]. 红外与激光工程, 2015, 44(3): 1034-1041.

    YAN SH B, ZHAO Y, YANG D CH, et al.. Optical tweezers based on near-field optical theory[J]. Infrared and Laser Engineering, 2015, 44(3): 1034-1041. (in Chinese)

[4] PAUZAUSKIE P J, RADENOVIC A, TREPAGNIER E, et al.. Optical trapping and integration of semiconductor nanowire assemblies in water[J]. Nature Materials, 2006, 5(2): 97-101.

[5] HSU Y H, PRALLE A. Note: Three-dimensional linearization of optical trap position detection for precise high speed diffusion measurements[J]. Review of Scientific Instruments, 2014, 85(7): 076104.

[6] JACOBS M J, BLANK K. Joining forces: integrating the mechanical and optical single molecule toolkits[J]. Chemical Science, 2014, 5(5): 1680-1697.

[7] GIBSON G M, LEACH J, KEEN S, et al.. Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy[J]. Optics Express, 2008, 16(19): 14561-14570.

[8] RICE S E, PURCELL T J, SPUDICH J A. Building and using optical traps to study properties of molecular motors[J]. Methods in Enzymology, 2003, 361: 112-133.

[9] SIMMONS R M, FINER J T, CHU S, et al.. Quantitative measurements of force and displacement using an optical trap[J]. Biophysical Journal, 1996, 70(4): 1813-1822.

[10] VISSCHER K, BLOCK S M. Versatile optical traps with feedback control[J]. Methods in Enzymology, 1998, 298: 460-489.

[11] BERG-SRENSEN K, FLYVBJERG H. Power spectrum analysis for optical tweezers[J]. Review of Scientific Instruments, 2004, 75(3): 594-612.

[12] FLORIN E L, PRALLE A, STELZER E H K, et al.. Photonic force microscope calibration by thermal noise analysis[J]. Applied Physics A: Materials Science & Processing, 1998, 66: S75-S78.

[13] DE MESSIERES M, CHANG J C, BRAWN-CINANI B, et al.. Single-molecule study of g-quadruplex disruption using dynamic force spectroscopy[J]. Physical Review Letters, 2012, 109(5): 058101.

[14] FAXEN H. The resistance against the movement of a rigour sphere in viscous fluids, which is embedded between two parallel layered barriers[J]. Annalen der Physik, 1922, 68(10): 89-119.

[15] ALLAN D W. Statistics of atomic frequency standards[J]. Proceedings of the IEEE, 1966, 54(2): 221-230.

朱春丽, 李静. 采用玻尔兹曼统计法分析光阱刚度的测量精度[J]. 光学 精密工程, 2016, 24(8): 1834. ZHU Chun-li, LI Jing. Analysis of stiffness measurement precision of optical trap with Boltzmann statistics method[J]. Optics and Precision Engineering, 2016, 24(8): 1834.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!