Frontiers of Optoelectronics, 2011, 4 (3): 264, 网络出版: 2012-09-21  

High-speed, compact silicon and hybrid plasmonic waveguides for signal processing

High-speed, compact silicon and hybrid plasmonic waveguides for signal processing
作者单位
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
摘要
Abstract
All-optical circuits for signal processing could be a promising solution to overcome the speed bottleneck of electronics. For the photonics industry, silicon becomes a competitive material of choice in the field of integrated optics for designing and implementing high-speed and compact photonic devices. To further increase the integration density, it is a critical challenge to manipulate light on scales much smaller than the wavelength for the dielectric waveguides due to the diffraction limitation. Surface plasmon-polaritons (SPPs), which break the diffraction limitation, are receiving increasing attentions in recent years. This paper compares the advantages and disadvantages between electronic devices and optical devices taking differentiator as an example, and proposes an optical parametric amplifier (OPA) using silicon-based hybrid plasmonic waveguide.
参考文献

[1] Koehl S. Silicon photonics could revolutionize future servers and networks. Converge! Network Digest, 2005, http://www.convergedigest.com/blueprints/ttp03/bp1.asp ID = 242&ctgy = Market

[2] Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518-526

[3] Reed G T. Device physics: the optical age of silicon. Nature, 2004, 427(6975): 595-596

[4] Liu F F, Li Q, Zhang Z Y, Qiu M, Su Y K. Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect. IEEE Journal on Selected Topics in Quantum Electronics, 2008, 14(3): 706-712

[5] Liu F F, Li Q, Zhang Z Y, Qiu M, Su Y K. Ultra-compact mode-split silicon microring resonator for format conversion from NRZ to FSK. Proceedings of SPIE, 2008, 7135: 713537

[6] Li Q, Ye T, Lu Y Y, Zhang Z Y, Qiu M, Su Y K. All optical NRZ-to-AMI conversion using linear filtering effect of silicon microring resonator. Chinese Optics Letters, 2009, 7(1): 12-14

[7] Liu F F, Wang T, Zhang Z Y, Qiu M, Su Y K. On-chip photonic generation of ultra-wideband monocycle pulses. Electronics Letters, 2009, 45(24): 1247-1249

[8] Liu F F, Wang T, Qiang L, Ye T, Zhang Z Y, Qiu M, Su Y K. Compact optical temporal differentiator based on silicon microring resonator. Optics Express, 2008, 16(20): 15880-15886

[9] Ferrera M, Park Y, Razzari L, Little B E, Chu S T, Morandotti R, Moss D J, Aza a J. On-chip CMOS-compatible all-optical integrator. Nature Communications, 2010, 1(29): 1-5

[10] Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M, Fukui M, Matsuo S. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Applied Physics Letters, 2005, 87(6): 061106

[11] Moreno E, Vidal F J G, Rodrigo S J, Moreno L M, Bozhevolnyi S I. Channel plasmon-polaritons: modal shape, dispersion, and losses. Optics Letters, 2006, 31(23): 3447-3449

[12] Veronis G, Fan S H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Optics Letters, 2005, 30(24): 3359-3361

[13] Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structure. Physical Review B: Condensed Matter and Materials Physics, 2001, 63(12): 125417

[14] Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic wavguide for subwavelength confinement and long range propagation. Nature Photonics, 2008, 2(8): 496-500

[15] Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646-16653

[16] Zhou G, Wang T, Su Y K. Design of Plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement. Proceedings of SPIE, 2010, 7987: 79870A

[17] Zhou G, Wang T, Su Y K. Wide broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference and Exhibition. 2010, SuK4

[18] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83-91

[19] Li Z, Zhang S, Vazquez J M, Lou Y, Khoe G D, Dorren H J S, Lenstra D. Ultrafast optical differentiators based on asymmetric Mach-Zehnder interferometer. In: Proceedings of Symposium IEEE/LEOS. Benelux Chapter, 2006, 173-176

[20] Slavík R, Park Y W, Kulishov M, Aza a J. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted longperiod fiber gratings. Optics Letters, 2009, 34(20): 3116-3118

[21] Xu J, Zhang X L, Dong J J, Liu D M, Huang D X. High-speed alloptical differentiator based on a semiconductor optical amplifier and an optical filter. Optics Letters, 2007, 32(13): 1872-1874

Yikai SU, Gan ZHOU, Fei LI, Tao WANG. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing[J]. Frontiers of Optoelectronics, 2011, 4(3): 264. Yikai SU, Gan ZHOU, Fei LI, Tao WANG. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing[J]. Frontiers of Optoelectronics, 2011, 4(3): 264.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!