红外与毫米波学报, 2015, 34 (4): 452, 网络出版: 2015-10-22   

毫米波合成孔径雷达的发展及其应用

Development and application of the millimeter wave SAR
作者单位
中国科学院电子学研究所 ,北京 100190
摘要
分析了毫米波SAR高分辨成像的基本原理, 阐述了毫米波SAR的优点, 并结合目前国际上典型的毫米波SAR系统, 综述了毫米波SAR技术与系统的发展状况, 讨论了毫米波SAR的应用前景、存在的问题以及未来的发展趋势.
Abstract
Synthetic aperture radar (SAR) is a microwave remote sensing radar with capability of all-day and all-weather imaging. Millimeter-wave SAR has become important for development of SAR with the advantage of small volume, light weight, and high resolution. The basic principle for high resolution imaging of millimeter-wave SAR is analyzed, and the advantage of millimeter-wave SAR is present. The state-of-art in the development of millimeter-wave SAR technologies and systems are illustrated with some typical millimeter-wave SAR systems. The application prospects, some issues, and future development trend of millimeter-wave SAR are also discussed.
参考文献

[1] Curlander J C, Robert N M. Synthetic aperture radar systems and signal processing[M]. John Wiley & Sons, New York, 1991, Chapter 1.

[2] DENG Yun-Kai, ZHAO Feng-Jun, WANG Yu. Brief analysis on the development and application of spaceborne SAR [J]. Journal of Radars(邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析.雷达学报), 2012, 1(1): 1-9.

[3] Ludwig M, D'Addio S, Perez P S. Ka-Band SAR for spaceborne applications based on scan-on-receive techniques[C]. Proceedings of 7th European Conference on Synthetic Aperture Radar(EUSAR2008), June 2-5, 2008, Friedrichshafen, Germany, pp. 1-4.

[4] TONG Wu-Qin, FAN Xiang.Millimeter wave synthetic aperture radar imaging[J] .Fire Control and Command Control(同武勤, 樊祥. 毫米波合成孔径雷达成像技术. 火力与指挥控制), 2006, 31(3): 78-81.

[5] Hughen J H, Baker A B, Sullivan D J. Demonstration of a SAR mode for a lightweight 35 GHz MMW radar[C]. Record of the 1994 IEEE National Radar Conference, 29-31, March 1994, Atlanta, USA, pp.23-28.

[6] Novak L M, Halversen S D, Owirka G, et al. Effects of polarization and resolution on SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 102-116.

[7] Schimpf H, Essen H, Boehmsdorff S, et al. MEMPHIS-A fully polarimetric experimental radar. Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium(IGARSS2002), June 24-26, 2002, Toronto, Canada, pp. 1714-1716.

[8] M. Edrich. Lessons learnt from the design and flight-testing of a highly miniaturised MMW SAR sensor system[C]. Proceedings of 6th European Conference on Synthetic Aperture Radar(EUSAR2006), May 16-18, 2006, Dresden, Germany.

[9] Fu L, Alsdorf D, Rodriguez E, et al. The surface water and ocean topography (SWOT) mission[C]. In Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, vol 2, Sept. 21-25, 2009, Venice, Italy, ESA Publication WPP-306.

[10] Magnard C, Meier E, Ruegg M, et al. High resolution millimeter wave SAR interferometry[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium(IGARSS2007), July 23-27, 2007, Barcelona, Spain, pp. 5061-5064.

[11] SONG Wan-Zhong. UAV millimeter wave synthetic aperture radar technique[J]. Telecommunication Engineering(宋万忠. 无人机载毫米波合成孔径雷达技术, 电讯技术), 2002, 42(6): 4-7.

[12] REN Pei-Hong, YU Guang-Zheng, SONG Wan-Zhong. An 8 mm high resolution airborne synthetic aperture radar[J]. Telecommunication Engineering(任培宏, 喻光正, 宋万忠, 等. 8 mm高分辨机载合成孔径雷达.电讯技术), 2004, 44(5): 77-79.

[13] SHI Xing. Application and development of millimeter-wave radars[J]. Telecommunication Engineering(石星. 毫米波雷达的应用和发展. 电讯技术), 2006, 46(1): 1-9.

[14] Stanko S, Johannes W, Sommer R, et al. SUMATRA-A UAV based miniaturized SAR system[C]. Proceedings of 9th European Conference on Synthetic Aperture Radar(EUSAR2012), Apr. 23-26, 2012, Nuremberg, Germany, pp. 437-440.

[15] Ruegg M, Meier E, Nuesch D. Capabilities of dual-frequency millimeter wave SAR with monopulse processing for ground moving target indication[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 539-553.

[16] Rüegg M, Meier E, Nüesch D, et al. High resolution millimeter wave SAR for moving target indication[C]. 6th European Conference on Synthetic Aperture Radar(EUSAR2006), May 16-18, 2006, Dresden, Germany.

[17] Sadowy G A, Ghaemi H, Hensley S C. First results from an airborne Ka-band SAR using SweepSAR and digital beamforming[C]. Proceedings of 9th European Conference on Synthetic Aperture Radar(EUSAR2012), Apr.23-26, 2012, Nuremberg, Germany, pp. 3-6.

[18] Doerry A W, Dubbert D F, Thompson M E, et al. A portfolio of fine resolution Ka-band SAR images: part I[C]. SPIE Defense and Security Symposium, March 28-April 1, 2005.

[19] Tomiyasu K. Conceptual spaceborne Ka-band spotlight synthetic aperture radar with reconfigurable aperture[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium(IGARSS2003), Vol.1, Jul. 21-25, 2003, Toulouse, pp.539-541.

[20] Ludwig M, D’Addio S, Saameno-Perez P. Ka-band SAR for spaceborne applications based on scan-on-receive techniques[C]. 7th European Conference on Synthetic Aperture Radar(EUSAR2008), Jun. 2-5, 2008, Friedrichshafen, Germany.

[21] Ludwig M, D’Addio S, Aguirre M, et al. Imaging Ka-band SAR interferometer[C]. 3rd International Asia-Pacific Conference on Synthetic Aperture Radar(APSAR), Sept. 26-30, 2011, Seoul, Korea.

[22] MollerD K, Heavey B, Hodges R, et al. The Glacier and Land Ice Surface Topography Interferometer (GLISTIN): A novel Ka-band digitally beamformed interferometer[C], 6th Annual NASA Earth Science Technology Conference(ESCTC2006), 26-28, Jun. 2006, College Park, MD, USA.

[23] Moller D K, Heavey B, Rignot E,et al. A novel Ka-band digitally beamformed interferometric synthetic aperture radar for glacier and ice-sheet topographic mapping: concept and technology[C]. Proceedings of 7th European Conference on Synthetic Aperture Radar(EUSAR2008), Jun. 2-5, 2008, Friedrichshafen, Germany, pp.1-4.

[24] Schaefer C, Dekker P L. Interferometric Ka-band SAR with DBF capability[C]. Proceedings of 9th European Conference on Synthetic Aperture Radar(EUSAR2012), Apr. 23-26, 2012, Nuremberg, Germany, pp.7-10.

[25] QIAO Ming, PAN Zhou-Hao, LIU Bo, et al. Analysis and compensation method research on the channel leakage error for three-baseline MMWInSAR[J]. Journal of Radar(乔明, 潘舟浩, 刘波, 等. 毫米波三基线InSAR通道泄露误差分析和补偿方法研究. 雷达学报), 2013, 2(1): 68-76.

[26] Capsoni C, Guarnieri A M, Riva C, et al. Impact of atmospheric propagation in a Ka-band space-borne sar for imaging and interferometry[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium(IGARSS2012), Jul. 22-27, 2012, Munich, Germany, pp.3815-3818.

王辉, 赵凤军, 邓云凯. 毫米波合成孔径雷达的发展及其应用[J]. 红外与毫米波学报, 2015, 34(4): 452. WANG Hui, ZHAO Feng-Jun, DENG Yun-Kai. Development and application of the millimeter wave SAR[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 452.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!