光子学报, 2018, 47 (4): 0422003, 网络出版: 2018-03-15  

利用MAP评估提高表面等离子体结构光照明技术成像质量

Improving the Imaging Performance of Plasmonic Structured Illumination Microscopy Using MAP Estimation Method
作者单位
中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室,长春 130033
引用该论文

余慕欣, 周文超, 吴一辉. 利用MAP评估提高表面等离子体结构光照明技术成像质量[J]. 光子学报, 2018, 47(4): 0422003.

YU Mu-xin, ZHOU Wen-chao, WU Yi-hui. Improving the Imaging Performance of Plasmonic Structured Illumination Microscopy Using MAP Estimation Method[J]. ACTA PHOTONICA SINICA, 2018, 47(4): 0422003.

参考文献

[1] ABBE E. Beitrge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv FR Mikroskopische Anatomie, 1873, 9(1): 413-418.

[2] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.

[3] HEINTZMANN R, CREMER C. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating\[C\]. SPIE. 1999, 3568(185): 15.

[4] FROHN J T, KNAPP H F, STEMMER A. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination[J].Proceedings of the National Academy of Sciences, 2000, 97(13): 7232-7236.

[5] HEINTZMANN R, JOVIN T M, CREMER C. Saturated patterned excitation microscopy—a concept for optical resolutionimprovement[J]. Journal of the Optical Society of America A, 2002, 19(8): 1599-1609.

[6] SCHERMELLEH L, CARLTON P M, HAASE S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 1332-1336.

[7] KNER P, CHHUN B B, GRIFFIS E R, et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5): 339-342.

[8] WEI F, LIU Z. Plasmonic structured illumination microscopy[J]. Nano Letters, 2010, 10(7): 2531-2536.

[9] CAO S, WANG T, XU W,et al. Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution[J]. Scientific Reports, 2016, 6.

[10] PONSETTO J L, WEI F, LIU Z. Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging[J]. Nanoscale, 2014, 6(11): 5807-5812.

[11] CAO S, Wang T, SUN Q, et al. Meta-nanocavity model for dynamic super-resolution fluorescent imaging based on the plasmonic structure illumination microscopy method[J]. Optics Express, 2017, 25(4): 3863-3874.

[12] LAl A, SHAN C, XI P. Structured illumination microscopy image reconstructionalgorithm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(4): 50-63.

[13] LI D, SHAO L, CHEN B C, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. Science, 2015, 349(6251): aab3500.

[14] 文刚,李思黾,杨西斌,等. 基于激光干涉的结构光照明超分辨荧光显微镜系统[J]. 光学学报,2017,37(3): 25-35.

    WEN G, LI S, YANG X, et al. Super-resolution fluorescence microscopy system by structured light illumination based on laser interference[J]. Acta Optica Sinica, 2017, 37(3): 25-35.

[15] CHANG B J, CHOU L J, CHANG Y C, et al. Isotropic image in structured illumination microscopy patterned with a spatial light modulator[J]. Optics Express, 2009, 17(17): 14710-14721.

[16] BRONGERSMA M L, KIK P G. Surface plasmon nanophotonics[M]. Springer, 2007.

[17] 宋超,郝鹏,余幕欣,等. 金纳米线与亚波长狭缝结合实现局域场增强研究[J]. 光子学报,2014,43(1): 0116001.

    SONG C, HAO P, YU M, et al. Enhancing electric field with gold subwavelength slits and nanowires[J]. Acta Photonica Sinica, 2014, 43(1): 0116001.

[18] FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.

[19] MILANFAR P, Super-resolution imaging[M]. CRC press, 2010.

[20] FRANOIS O, EDUARDO S, VINCENT L,et al. Bayesian estimation for optimized structured illumination microscopy[J]. IEEE Transactions on Image Processing, 2012, 21(2): 601-614.

[21] TOMAS L, PAVELKR Z, ZDENEK S, et al. Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation[J]. Optics Express, 2014, 22(24): 29805-29817.

[22] YOSHIKAWA H, ADACHI S. Optical constants of ZnO[J]. Japanese Journal of Applied Physics, 1997, 36(10R): 6237.

[23] JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370.

[24] LI L. New formulation of the Fourier modal method for crossed surface-relief gratings[J]. Journal of the Optical Society of America A, 1997, 14(10): 2758-2767.

[25] WHITE J S, VERONIS G, YU Z, et al. Extraordinary optical absorption through subwavelength slits[J]. Optics Letters, 2009, 34(5): 686-688.

[26] WRIGHT S J, NOCEDAL J. Numerical optimization[M]. Springer Science, 1999, 35(67-68): 7.

[27] RAINER H, PIER A. B. High-resolution reconstruction in fluorescence microscopy with patterned excitation[J]. Applied Optics, 2006, 45(20): 5037-5045.

余慕欣, 周文超, 吴一辉. 利用MAP评估提高表面等离子体结构光照明技术成像质量[J]. 光子学报, 2018, 47(4): 0422003. YU Mu-xin, ZHOU Wen-chao, WU Yi-hui. Improving the Imaging Performance of Plasmonic Structured Illumination Microscopy Using MAP Estimation Method[J]. ACTA PHOTONICA SINICA, 2018, 47(4): 0422003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!