激光与光电子学进展, 2017, 54 (4): 040604, 网络出版: 2017-04-19  

光学整流罩对机载激光通信光束远场发散角的影响 下载: 724次

Influence of Optical Dome on Airborne Laser Communication Beam Far-Field Divergence Angle
王超 1,2,*江伦 1,2佟首峰 1,2李英超 1,2刘壮 1,2
作者单位
1 长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022
2 长春理工大学空地激光通信技术重点学科实验室, 吉林 长春 130022
摘要
分析了同心球面光学整流罩内、外表面的球心与机载激光通信发射天线的万向节点不重合时,非对称的光学整流罩对通信光束远场发散角的影响。结果表明,在最大通信光束远场发射角约为54°的条件下,外部口径为200 mm、厚度为5 mm的K9球冠整流罩使口径为30 mm的通信光束远场发散角由126 μrad扩展到5.27~6.46 mrad,而仅由整流罩面形加工精度引起的通信光束远场发散角变化相比由整流罩光焦度引起的通信光束远场发散角变化十分微小,可以忽略不计。利用球面透镜补偿通信光束远场发散角的变化,可使通信光束在整个发射角范围内的远场发散角均小于600 μrad。
Abstract
When the centers of inner and outer surfaces of the concentric spherical surface dome and the gimbal joint of the airborne laser communication transmitting antenna are not coincidence, the influence of the asymmetry optical dome on communication beam far-field divergence angle is analyzed. The results show that, at a maximal communication beam far-field divergence angle of 54°, a K9 spherical dome with the external diameter of 200 mm and the thickness of 5 mm makes the communication beam far-field divergence angle expand to 5.27-6.46 mrad from 126 μrad. The communication beam far-field divergence angle variation purely introduced by the dome surface manufacturing precision is very tiny, and can be ignored compared with the variation introduced by the dome optical power. A lens with spherical surfaces is used to compensate the communication beam far-field divergence angle change, and the communication beam far-field divergence angle of the whole transmitting angle range is smaller than 600 μrad.
参考文献

[1] Alonso A, Reyes M, Sodnik Z. Performance of satellite-to-ground communications link between ARTEMIS and the optical ground station[C]. SPIE, 2004, 5572: 372-383.

[2] Marshalek R G, Mecherle G S, Jordan P R. System-level comparison of optical and RF technologies for space-to-space and space-to-ground communication links[C]. SPIE, 1996, 2699: 134-145.

[3] 宋延嵩, 常 帅, 佟首峰, 等. 航空激光通信系统的特性分析及机载激光通信实验[J]. 中国激光, 2016, 43(12): 1206004.

    Song Yansong, Chang Shuai, Tong Shoufeng, et al. Feature analysis of airborne laser communication system and airborne laser communication experiment[J]. Chinese J Lasers, 2016, 43(12): 1206004.

[4] 江 伦, 王 超, 安 岩, 等. 库德式激光通信终端偏振态传输特性分析[J]. 激光与光电子学进展, 2016, 53(11): 110603.

    Jiang Lun, Wang Chao, An Yan, et al. Polarization transfer characteristic analysis of Coude type laser communication terminal[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110603.

[5] 江 伦, 胡 源, 王 超, 等. 一点对多点同时空间激光通信光学系统研究[J]. 光学学报, 2016, 36(5): 0506001.

    Jiang Lun, Hu Yuan, Wang Chao, et al. Optical system in one-point to multi-point simultaneous space laser communication[J]. Acta Optica Sinica, 2016, 36(5): 0506001.

[6] 姜会林, 刘志刚, 佟首峰, 等. 机载激光通信环境适应性及关键技术分析[J]. 红外与激光工程, 2007, 36(s1): 299-302.

    Jiang Huilin, Liu Zhigang, Tong Shoufeng, et al. Analysis for the environmental adaptation and key technologies of airborne laser communication system[J]. Infrared and Laser Engineering, 2007, 36(s1): 299-302.

[7] 高天元, 胡 源, 姜会林, 等. 机载空间激光通信大气附面层影响及补偿技术研究[J]. 兵工学报, 2015, 36(12): 2278-2283.

    Gao Tianyuan, Hu yuan, Jiang Huilin, et al. Effect of atmosphere boundary layer on airborne space laser communication and its compensation technology[J]. Acta Armamentarii, 2015, 36(12): 2278-2283.

[8] 闫鲁生, 王 峰, 吴 畏, 等. 无人机激光通信载荷发展现状与关键技术[J]. 激光与光电子学进展,2016, 53(8): 080005.

    Yan Lusheng, Wang Feng, Wu Wei, et al. Current status and key technologies of unmanned aerial vehicle laser communication payloads[J]. Laser & Optoelectronics Progess, 2016, 53(8): 080005.

[9] Peter G, Wiiliam R, Rita M, et al. Modulating retro-reflector lasercomp systems at the naval research laboratory[C]. Proceedings of the 2010 Military Communications Conference (MILCOM), 2010: 1601-1606.

[10] 赵洪卫, 侯天晋, 朱 斌, 等. 机载光学整流罩与扫描反射镜尺寸及渐晕的设计分析[J]. 应用光学, 2010, 31(6): 898-903.

    Zhao Hongwei, Hou Tianjin, Zhu Bin, et al. Design analysis for optical dome and scanning mirror[J]. Journal of Applied Optics, 2010, 31(6): 898-903.

[11] Wang C, Zhang X, Qu H M, et al. Sphere-cone-polynomial special window with good aberration characteristic[J]. Chinese Physics B, 2013, 22(7): 074212.

[12] 王 超, 江 伦, 董科研, 等. 准直圆孔衍射高斯光束远场发散度[J]. 光子学报, 2015, 44(11): 1105001.

    Wang Chao, Jiang Lun, Dong Keyan, et al. Research of far-field divergence for collimated Gaussian beam diffracted by a circular aperture[J]. Acta Photonica Sinica, 2015, 44(11): 1105001.

[13] 郁道银, 谈恒英. 工程光学[M]. 北京: 机械工业出版社, 2005: 169-170.

    Yu Daoyin, Tan Hengying. Engineering optics[M]. Beijing: China Machine Press, 2005: 169-170.

[14] 姜会林, 佟首峰, 张立中, 等. 空间激光通信技术与系统[M]. 北京: 国防工业出版社, 2010: 3.

    Jiang Huilin, Tong shoufeng, Zhang Lizhong, et al. The technologies and systems of space laser communication[M]. Beijing: National Defence Industry Press, 2010: 3.

[15] ZEMAX Development Corporation. Zemax optical design program guide[M]. Redmond: ZEMAX Development Corporation Press, 2009: 215-219.

王超, 江伦, 佟首峰, 李英超, 刘壮. 光学整流罩对机载激光通信光束远场发散角的影响[J]. 激光与光电子学进展, 2017, 54(4): 040604. Wang Chao, Jiang Lun, Tong Shoufeng, Li Yingchao, Liu Zhuang. Influence of Optical Dome on Airborne Laser Communication Beam Far-Field Divergence Angle[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040604.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!