人工晶体学报, 2020, 49 (4): 689, 网络出版: 2020-06-15  

炭吸附共沉淀钒酸铋纳米粉体的制备及其光催化性能研究

Preparation and Photocatalytic Properties of BiVO4 Nano Powders by Carbon Adsorption Coprecipitation Method
作者单位
内蒙古科技大学化学与化工学院,包头 014010
摘要
通过炭吸附共沉淀法制备钒酸铋纳米粉体,并对粉体的相关物理化学特性进行表征,表征方法包括透射电镜(TEM),X射线衍射仪(XRD),比表面积(BET),紫外可见分光光度计(UV-Vis),红外光谱(FT-IR)和热重分析仪(TG-DTG);利用甲基橙(MO)作为目标降解物,以500 W镝灯为可见光源,进行BiVO4光催化性能研究。结果表明,炭吸附共沉淀法制得的BiVO4粉体较普通沉淀法制得的粉体具有分布均匀且较分散、粒径小、团聚少等优点;同时600 ℃煅烧所得粉体光吸收波长较其他温度下发生红移,使得在可见光范围吸收能力增强;光催化降解甲基橙降解率在120 min内可达96%。
Abstract
BiVO4 nanopowders was synthesized by carbon adsorption coprecipitation method. Its physical and chemical properties were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), specific surface area (BET), ultraviolet visible spectrophotometer (UV-Vis), infrared spectroscopy (FT-IR) and thermogravimetric analyzer (TG-DTG), respectively. The photocatalytic property of prepared samples was investigated using methyl orange (MO) as pollutant and 500 W dysprosium lamp as light source. The results show that BiVO4 powders prepared by carbon adsorption coprecipitation method has the advantages of uniform distribution, smaller particle size and less agglomeration compared with the powders prepared by ordinary precipitation method. Meanwhile, the light absorption wavelength of the powder calcined at 600 ℃ was red-shifted compared with other temperatures, which enhanced the absorption capacity in the visible light range. The photodegradation of methyl orange results show that the degradation rate of BiVO4 powder prepared by carbon adsorption coprecipitation method was 96% within 120 min.
参考文献

[1] 申玉芳,龙 飞,邹正光.半导体光催化技术研究进展[J].材料导报,2006,6(20):28-31.

[2] Doan H D, Weli A, Wu J. A combined photocalytic and electrochemical treatment of wastewater containing propylene glycol methyl ether and metal ions[J].Chem. Eng.J.,2009,151:51-58.

[3] Di L G, Tosoni S, Pacchioni G. Theoretical treatment of semiconductor heterojunctions for photocatalysis:the WO3/BiVO4 interface[J].Journal of Physics. Condensed Matter:An Institute of Physics Journal,2019,31(43).

[4] 齐海浪.光催化纳米材料在环境保护中的应用现状[J].节能与环保,2019(6):120-121.

[5] 李先学,陈彰旭,沈高扬,等.TiO2光催化降解染料废水的研究进展[J].染料与染色,2010,47(2):42-45.

[6] Li H B, Liu G C, Duan X C. Monoclinic BiVO4 with regular morphologies:hydrothermal synthesis, characterization and photocatalytic properties[J].Mater. Chem. Phys.,2009,115:9-13.

[7] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J].J. Am. Chem. Soc.,2010,31(12):11459-11467.

[8] Zhang X J, Chen T, Xu Y Q. Synthesis and characterization of environmentally friendly BiVO4 yellow pigment by non-hydrolytic sol-gel route[J].Journal of Sol-Gel Science and Technology,2019,91(1):127-137.

[9] 杜光超,尹丹凤,孙朝晖,等.固相煅烧法制备钒酸铋颜料工艺研究[J].钢铁钒钛,2016,37(5):35-42.

[10] 张 萍,王焕英,许保恩,等.化学沉淀法制备BiVO4及其表征[J].人工晶体学报,2008,27(3):716-720.

[11] 陈 颖,李 慧,赵连成,等.水热合成纳米BiVO4的制备及表征[J].材料导报,2011,25(18):23-26.

[12] 刘晶冰,张慧明,汪 浩,等.纳米钒酸铋的微波快速合成及光催化性能研究[J].无机化学学报,2008(5):777-780.

[13] Wei L, Yu J, Yan Z, et al. Synthesis and photocatalytic properties of BiVO4 by a citric acid complexation process[J].Rare Metals,2011,30(1):203-207.

[14] 蒋海燕,戴洪兴,孟 雪,等.单斜BiVO4可见光催化降解甲基橙的形貌效应[J].催化学报,2011,32(6):939-949.

牛宇彤, 郭贵宝. 炭吸附共沉淀钒酸铋纳米粉体的制备及其光催化性能研究[J]. 人工晶体学报, 2020, 49(4): 689. NIU Yutong, GUO Guibao. Preparation and Photocatalytic Properties of BiVO4 Nano Powders by Carbon Adsorption Coprecipitation Method[J]. Journal of Synthetic Crystals, 2020, 49(4): 689.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!