光学学报, 2018, 38 (1): 0111001, 网络出版: 2018-08-31   

基于动态散斑的光学相干层析成像技术 下载: 958次

Optical Coherence Tomography Based on Dynamic Speckle
作者单位
1 华南师范大学物理与电信工程学院, 广东 广州 510006
2 佛山科技学院电子与信息工程学院, 广东 佛山 528000
3 华南师范大学国家级物理学科基础课实验教学示范中心, 广东 广州 510006
引用该论文

陈俊波, 曾亚光, 袁治灵, 唐志列. 基于动态散斑的光学相干层析成像技术[J]. 光学学报, 2018, 38(1): 0111001.

Junbo Chen, Yaguang Zeng, Zhiling Yuan, Zhilie Tang. Optical Coherence Tomography Based on Dynamic Speckle[J]. Acta Optica Sinica, 2018, 38(1): 0111001.

参考文献

[1] 刘景宇, 张春雨, 唐晓英, 等. OCT内窥镜的研究现状与展望[J]. 激光与光电子学进展, 2015, 52(10): 100006.

    刘景宇, 张春雨, 唐晓英, 等. OCT内窥镜的研究现状与展望[J]. 激光与光电子学进展, 2015, 52(10): 100006.

    刘景宇, 张春雨, 唐晓英, 等. OCT内窥镜的研究现状与展望[J]. 激光与光电子学进展, 2015, 52(10): 100006.

    Liu J Y, Zhang C Y, Tang X Y, et al. Research status and prospect of endoscopic OCT[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100006.

    Liu J Y, Zhang C Y, Tang X Y, et al. Research status and prospect of endoscopic OCT[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100006.

    Liu J Y, Zhang C Y, Tang X Y, et al. Research status and prospect of endoscopic OCT[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100006.

[2] 付磊, 苏亚, 李果华, 等. 广义极大似然估计在OCT无创血糖监测中的应用[J]. 激光与光电子学进展, 2016, 53(3): 031701.

    付磊, 苏亚, 李果华, 等. 广义极大似然估计在OCT无创血糖监测中的应用[J]. 激光与光电子学进展, 2016, 53(3): 031701.

    付磊, 苏亚, 李果华, 等. 广义极大似然估计在OCT无创血糖监测中的应用[J]. 激光与光电子学进展, 2016, 53(3): 031701.

    Fu L, Su Y, Li G H, et al. Application of maximum likelihood type estimates in noninvasive blood glucose monitoring in vivo using optical coherence tomography[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031701.

    Fu L, Su Y, Li G H, et al. Application of maximum likelihood type estimates in noninvasive blood glucose monitoring in vivo using optical coherence tomography[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031701.

    Fu L, Su Y, Li G H, et al. Application of maximum likelihood type estimates in noninvasive blood glucose monitoring in vivo using optical coherence tomography[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031701.

[3] Chen Z, Milner T E, Dave D, et al. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media[J]. Optics Letters, 1997, 22(1): 64-66.

    Chen Z, Milner T E, Dave D, et al. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media[J]. Optics Letters, 1997, 22(1): 64-66.

    Chen Z, Milner T E, Dave D, et al. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media[J]. Optics Letters, 1997, 22(1): 64-66.

[4] Zhao Y, Chen Z, Saxer C, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 2000, 25(2): 114-116.

    Zhao Y, Chen Z, Saxer C, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 2000, 25(2): 114-116.

    Zhao Y, Chen Z, Saxer C, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 2000, 25(2): 114-116.

[5] Vakoc B, Yun S, Boer J D, et al. Phase-resolved optical frequency domain imaging[J]. Optics Express, 2005, 13(14): 5483-5493.

    Vakoc B, Yun S, Boer J D, et al. Phase-resolved optical frequency domain imaging[J]. Optics Express, 2005, 13(14): 5483-5493.

    Vakoc B, Yun S, Boer J D, et al. Phase-resolved optical frequency domain imaging[J]. Optics Express, 2005, 13(14): 5483-5493.

[6] Wang R K, Ma Z. Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography[J]. Optics Letters, 2006, 31(20): 3001-3003.

    Wang R K, Ma Z. Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography[J]. Optics Letters, 2006, 31(20): 3001-3003.

    Wang R K, Ma Z. Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography[J]. Optics Letters, 2006, 31(20): 3001-3003.

[7] Mariampillai A, Standish B A, Moriyama E H, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 2008, 33(13): 1530-1532.

    Mariampillai A, Standish B A, Moriyama E H, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 2008, 33(13): 1530-1532.

    Mariampillai A, Standish B A, Moriyama E H, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 2008, 33(13): 1530-1532.

[8] Mariampillai A, Leung M, Jarvi M, et al. Optimized speckle variance OCT imaging of microvasculature[J]. Optics Letters, 2010, 35(8): 1257-1259.

    Mariampillai A, Leung M, Jarvi M, et al. Optimized speckle variance OCT imaging of microvasculature[J]. Optics Letters, 2010, 35(8): 1257-1259.

    Mariampillai A, Leung M, Jarvi M, et al. Optimized speckle variance OCT imaging of microvasculature[J]. Optics Letters, 2010, 35(8): 1257-1259.

[9] Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography[J]. Journal of Biomedical Optics, 1999, 4(1): 95-105.

    Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography[J]. Journal of Biomedical Optics, 1999, 4(1): 95-105.

    Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography[J]. Journal of Biomedical Optics, 1999, 4(1): 95-105.

[10] Barton J K, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 2005, 13(14): 5234-5239.

    Barton J K, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 2005, 13(14): 5234-5239.

    Barton J K, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 2005, 13(14): 5234-5239.

[11] Wang M, Zeng Y, Liang X, et al. Full-field optical micro-angiography[J]. Applied Physics Letters, 2014, 104(5): 053704.

    Wang M, Zeng Y, Liang X, et al. Full-field optical micro-angiography[J]. Applied Physics Letters, 2014, 104(5): 053704.

    Wang M, Zeng Y, Liang X, et al. Full-field optical micro-angiography[J]. Applied Physics Letters, 2014, 104(5): 053704.

[12] Wang M, Zeng Y, Liang X, et al. In vivo label-free microangiography by laser speckle imaging with intensity fluctuation modulation[J]. Journal of Biomedical Optics, 2013, 18(12): 126001.

    Wang M, Zeng Y, Liang X, et al. In vivo label-free microangiography by laser speckle imaging with intensity fluctuation modulation[J]. Journal of Biomedical Optics, 2013, 18(12): 126001.

    Wang M, Zeng Y, Liang X, et al. In vivo label-free microangiography by laser speckle imaging with intensity fluctuation modulation[J]. Journal of Biomedical Optics, 2013, 18(12): 126001.

陈俊波, 曾亚光, 袁治灵, 唐志列. 基于动态散斑的光学相干层析成像技术[J]. 光学学报, 2018, 38(1): 0111001. Junbo Chen, Yaguang Zeng, Zhiling Yuan, Zhilie Tang. Optical Coherence Tomography Based on Dynamic Speckle[J]. Acta Optica Sinica, 2018, 38(1): 0111001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!