光学学报, 2018, 38 (3): 0324001, 网络出版: 2018-03-20   

工型超材料共振研究 下载: 750次

Resonance of I-Shaped Metamaterials
作者单位
贵州大学物理学院, 贵州 贵阳 550025
引用该论文

刘瑶, 陈跃刚. 工型超材料共振研究[J]. 光学学报, 2018, 38(3): 0324001.

Liu Yao, Chen Yuegang. Resonance of I-Shaped Metamaterials[J]. Acta Optica Sinica, 2018, 38(3): 0324001.

参考文献

[1] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6688): 667-669.

    Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6688): 667-669.

[2] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review[J]. Sensors and Actuators B, 1999, 54(3): 3-15.

    Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review[J]. Sensors and Actuators B, 1999, 54(3): 3-15.

[3] 陆云清, 成心怡, 许敏, 等. 基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射[J]. 物理学报, 2016, 65(20): 204207.

    陆云清, 成心怡, 许敏, 等. 基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射[J]. 物理学报, 2016, 65(20): 204207.

    Lu Y Q, Cheng X Y, Xu M, et al. Extraordinary transmission of light enhanced by exciting hybrid states of Tamm and surface plasmon polaritions in a single nano-slit[J]. Acta Physica Sinica, 2016, 65(20): 204207.

    Lu Y Q, Cheng X Y, Xu M, et al. Extraordinary transmission of light enhanced by exciting hybrid states of Tamm and surface plasmon polaritions in a single nano-slit[J]. Acta Physica Sinica, 2016, 65(20): 204207.

[4] 张国浩, 陈跃刚. 激发双线波导中的对称和反对称等离子体波导模式的新型耦合器[J]. 光学学报, 2015, 35(11): 1113003.

    张国浩, 陈跃刚. 激发双线波导中的对称和反对称等离子体波导模式的新型耦合器[J]. 光学学报, 2015, 35(11): 1113003.

    Zhang G H, Chen Y G. New coupler for exciting symmetric and antisymmetric plasmon modes in double-wire transmission lines[J]. Acta Optica Sinica, 2015, 35(11): 1113003.

    Zhang G H, Chen Y G. New coupler for exciting symmetric and antisymmetric plasmon modes in double-wire transmission lines[J]. Acta Optica Sinica, 2015, 35(11): 1113003.

[5] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Philosophical Magazine, 1902, 18(1): 269-275.

    Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Philosophical Magazine, 1902, 18(1): 269-275.

[6] Kretschmann E. The determination of the optical constant of metals by excitation of surface plasmons[J]. Zeitschrift Für Physik A Hadrons & Nuclei, 1971, 241(4): 313-324.

    Kretschmann E. The determination of the optical constant of metals by excitation of surface plasmons[J]. Zeitschrift Für Physik A Hadrons & Nuclei, 1971, 241(4): 313-324.

[7] 付康印, 陈跃刚. 金属亚波长波导阵列的聚焦和分束[J]. 光学学报, 2011, 31(5): 0523003.

    付康印, 陈跃刚. 金属亚波长波导阵列的聚焦和分束[J]. 光学学报, 2011, 31(5): 0523003.

    Fu K Y, Chen Y G. Focusing and beam splitting of metal sub-wavelength waveguide array[J]. Acta Optica Sinica, 2011, 31(5): 0523003.

    Fu K Y, Chen Y G. Focusing and beam splitting of metal sub-wavelength waveguide array[J]. Acta Optica Sinica, 2011, 31(5): 0523003.

[8] 陈跃刚, 杨兴. 基于表面等离子体腔的波分复用器件设计[J]. 贵州大学学报(自然科学版), 2012, 29(4): 12-16.

    陈跃刚, 杨兴. 基于表面等离子体腔的波分复用器件设计[J]. 贵州大学学报(自然科学版), 2012, 29(4): 12-16.

    Chen Y G, Yang X. Design of multi-channel wavelength demultiplexer based on surface plasma resonant cavity[J]. Journal of Guizhou University(Natural Sciences Edition), 2012, 29(4): 12-16.

    Chen Y G, Yang X. Design of multi-channel wavelength demultiplexer based on surface plasma resonant cavity[J]. Journal of Guizhou University(Natural Sciences Edition), 2012, 29(4): 12-16.

[9] Bog U, Huska K, Maerkle F, et al. Design of plasmonic grating structures to wards optimum signal discrimination for biosensing applications[J]. Optics Express, 2012, 20(10): 11357-11369.

    Bog U, Huska K, Maerkle F, et al. Design of plasmonic grating structures to wards optimum signal discrimination for biosensing applications[J]. Optics Express, 2012, 20(10): 11357-11369.

[10] 李风华, 单长胜, 杨贵福, 等. 表面等离子体共振技术在电化学反应过程研究中的应用[J]. 分析化学, 2007, 35(5): 754-759.

    李风华, 单长胜, 杨贵福, 等. 表面等离子体共振技术在电化学反应过程研究中的应用[J]. 分析化学, 2007, 35(5): 754-759.

    Li F H, Shan C S, Yang G F, et al. Surface plasmon resonance spectroscopy and its applications for the studies on electrochemical processes[J]. Chinese Journal of Analytical Chemistry, 2007, 35(5): 754-759.

    Li F H, Shan C S, Yang G F, et al. Surface plasmon resonance spectroscopy and its applications for the studies on electrochemical processes[J]. Chinese Journal of Analytical Chemistry, 2007, 35(5): 754-759.

[11] Jing Q L, Du C G, Gao J C. New application of surface plasmon resonance-measurement of weak magnetic field[J]. Acta Physica Sinica, 2013, 62(3): 037302.

    Jing Q L, Du C G, Gao J C. New application of surface plasmon resonance-measurement of weak magnetic field[J]. Acta Physica Sinica, 2013, 62(3): 037302.

[12] 刘晓菲, 张学如, 兰国强, 等. 表面等离子体共振的热致折射率[J]. 光学学报, 2016, 36(5): 0524001.

    刘晓菲, 张学如, 兰国强, 等. 表面等离子体共振的热致折射率[J]. 光学学报, 2016, 36(5): 0524001.

    Liu X F, Zhang X R, Lan G Q, et al. Thermal index based on surface plasmon resonance[J]. Acta Optica Sinica, 2016, 36(5): 0524001.

    Liu X F, Zhang X R, Lan G Q, et al. Thermal index based on surface plasmon resonance[J]. Acta Optica Sinica, 2016, 36(5): 0524001.

[13] 朱路, 王杨, 熊广, 等. 宽波段纳米超材料太阳吸收器的设计及其吸收特性[J]. 光学学报, 2017, 37(9): 0923001.

    朱路, 王杨, 熊广, 等. 宽波段纳米超材料太阳吸收器的设计及其吸收特性[J]. 光学学报, 2017, 37(9): 0923001.

    Zhu L, Wang Y, Xiong G, et al. Design and absorption characteristics of broadband nano-metematerial solar absorber[J]. Acta Optica Sinica, 2017, 37(9): 0923001.

    Zhu L, Wang Y, Xiong G, et al. Design and absorption characteristics of broadband nano-metematerial solar absorber[J]. Acta Optica Sinica, 2017, 37(9): 0923001.

[14] Vafapour Z. Near infrared biosensor based on classical electromagnetically induced reflectance (Cl-EIR) in a planar complementary metamaterial[J]. Optics Communications, 2017, 387: 1-11.

    Vafapour Z. Near infrared biosensor based on classical electromagnetically induced reflectance (Cl-EIR) in a planar complementary metamaterial[J]. Optics Communications, 2017, 387: 1-11.

[15] Freise A. Optical metamaterials: Fundamentals and applications, by W. Cai and V. Shalaev[J]. Contemporary Physics, 2012, 53(3): 278-279.

    Freise A. Optical metamaterials: Fundamentals and applications, by W. Cai and V. Shalaev[J]. Contemporary Physics, 2012, 53(3): 278-279.

[16] Liang Q, Wang T, Lu Z, et al. Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting[J]. Advanced Optical Materials, 2013, 1(1): 43-49.

    Liang Q, Wang T, Lu Z, et al. Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting[J]. Advanced Optical Materials, 2013, 1(1): 43-49.

[17] Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594-598.

    Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594-598.

[18] Zhang L, Tassin P, Koschny T, et al. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency[J]. Applied Physics Letters, 2010, 97(24): 241904.

    Zhang L, Tassin P, Koschny T, et al. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency[J]. Applied Physics Letters, 2010, 97(24): 241904.

[19] Smith D R, Pendry J B. Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792.

    Smith D R, Pendry J B. Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792.

[20] Zhang S, Park Y S, Li J, et al. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2): 023901.

    Zhang S, Park Y S, Li J, et al. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2): 023901.

[21] Smith D R, Kroll N. Negative refractive index in left-handed materials[J]. Physical Review Letters, 2000, 85(14): 2933-2936.

    Smith D R, Kroll N. Negative refractive index in left-handed materials[J]. Physical Review Letters, 2000, 85(14): 2933-2936.

[22] Liu N, Weiss T, Mesch M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Letters, 2010, 10(4): 1103-1107.

    Liu N, Weiss T, Mesch M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Letters, 2010, 10(4): 1103-1107.

[23] Vafapour Z, Zakery A. New approach of plasmonically induced reflectance in a planar metamaterial for plasmonic sensing applications[J]. Plasmonics, 2016, 11(2): 609-618.

    Vafapour Z, Zakery A. New approach of plasmonically induced reflectance in a planar metamaterial for plasmonic sensing applications[J]. Plasmonics, 2016, 11(2): 609-618.

[24] Vafapour Z, Forouzeshfard M R. Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials[J]. Plasmonics, 2017, 12(5): 1331-1342.

    Vafapour Z, Forouzeshfard M R. Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials[J]. Plasmonics, 2017, 12(5): 1331-1342.

[25] 钱景仁. 耦合模理论及其在光纤光学中的应用[J]. 光学学报, 2009, 29(5): 1188-1192.

    钱景仁. 耦合模理论及其在光纤光学中的应用[J]. 光学学报, 2009, 29(5): 1188-1192.

    Qian J R. Coupled-mode theory and its application to fiber optics[J]. Acta Optica Sinica, 2009, 29(5): 1188-1192.

    Qian J R. Coupled-mode theory and its application to fiber optics[J]. Acta Optica Sinica, 2009, 29(5): 1188-1192.

刘瑶, 陈跃刚. 工型超材料共振研究[J]. 光学学报, 2018, 38(3): 0324001. Liu Yao, Chen Yuegang. Resonance of I-Shaped Metamaterials[J]. Acta Optica Sinica, 2018, 38(3): 0324001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!