中国激光, 2013, 40 (1): 0104003, 网络出版: 2012-12-13   

靶向量子点的合成及其在活体成像研究中的应用

Synthesis of Targeting Quantum Dot and Its Applications in In Vivo Imaging Research
作者单位
1 深圳大学光电工程学院, 教育部/广东省光电子器件与系统重点实验室, 广东 深圳 518060
2 深圳大学医学院, 深圳市生物医学工程重点实验室, 广东 深圳 518060
摘要
利用水相法制备CdTe量子点,在不同细胞培养基及不同pH值环境中对其进行了稳定性表征,研究了量子点对HeLa细胞增殖抑制率的影响,而后利用耦联转铁蛋白的量子点对HeLa细胞进行了靶向性标记,最后将量子点与葡聚糖耦联,通过透明背脊皮翼视窗观察其在血管内的动态过程。结果表明:合成的量子点发射谱峰值为660 nm,在DMEM和M1640细胞培养基中具有良好稳定性,当缓冲液pH值由5升高到13时,量子点荧光强度先升高后下降;量子点浓度为13 μg/mL时,HeLa细胞存活率高于80%;耦联转铁蛋白的量子点对HeLa细胞靶向作用明显;可观察到耦联葡聚糖的量子点在小鼠血管中的动态运动。该研究表明合成的量子点可成功用于活体成像。
Abstract
We synthesize CdTe quantum dots in aqueous solution and characterize the stability of quantum dots in different culture media and different pH environments. The impact of quantum dots on HeLa cellular proliferation inhibition rate is studied. The quantum dots conjugated with transferrin are used for HeLa cell labelling. Finally, the quantum dots are conjugated with dextran and applied in the transparent dorsal skin fold window chamber to observe the dynamics of the bioconjugations in blood vessels. The experimental results show that the quantum dots peaking at 660 nm are stable in cell culture media of DMEM and M1640. When the pH of the buffer solutions increases from 5 to 13, the fluorescence intensity of CdTe increases firstly and then reduces. The cell viability is higher than 80% even when the concentration of quantum dots is 13 μg/mL. The quantum dots conjugated with transferrin obviously target to the HeLa cells. What′s more, the clear dynamic flourescence images of quantum dots conjugated with dextran are observed under microscope. The study shows that such quantum dots can be used for living imaging research successfully.
参考文献

[1] Shuming Nie, Yun Xing, Gloria J. Kim et al.. Nanotechnology applications in cancer[J]. Ann. Rev. Bioned. Eng., 2007, 9: 257~288

[2] Ute Resch-Genger, Markus Grabolle, Sara Cavaliere-Jaricot et al.. Quantum dots versus organic dyes as fluorescent labels[J]. Nature Methods, 2008, 5(9): 763~775

[3] W. C. Chan, S. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016~2018

[4] M. Bruchez, M. Moronne, P. Gin et al.. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013~2016

[5] M. Y. Gao, A. L. Rogach, A. Kornowski et al.. Strongly photoluminescent CdTe nanocrytals by proper surface modification[J]. J. Phys. Chem. B, 1998, 102(43): 8360~8363

[6] 王晓梅, 杨开泰, 许改霞 等. CdSe/CdS/Zns量子点对体外培养成熟卵母细胞的侵入性研究[J]. 中国激光, 2010, 37(11): 2730~2734

    Wang Xiaomei, Yong Ken-Tye, Xu Gaixia et al.. Invasion of CdSe/CdS/ZnS quantum dots for oocytes in vitro maturation[J]. Chinese J. Lasers, 2010, 37(11): 2730~2734

[7] Gudrun E. Koehl, Andreas Gaumann, Edward K. Geissler. Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies[J]. Clin. Exp. Metastasis, 2009, 26(4): 329~344

[8] Li Chuanyuan, Shan Siqing, Cao Yiting et al.. Role of incipient angiogenesis in cancer metastasis[J]. Cancer Metastasis Rev., 2000, 19(1-2): 7~11

[9] Hiroshi Tada, Hideo Higuchi, Tomonobu M. Wanatabe et al..In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice[J]. Cancer Res., 2007, 67(3): 1138~1144

[10] Wing-Cheung Law, Ken-Tye Yong, Indrajit Roy et al.. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging[J]. Small, 2009, 5(11): 1302~1310

[11] Greg T. Hermanson. Bioconjugte Techniques (2nd edition)[M]. Rockford: Pierce Biotechnology, Thermo Fisher Scientific, 2008. 495~497

[12] Gregory M. Palmer, Andrew N. Fontanella, Siqing Shan et al.. In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters[J]. Nature Protoc., 2011, 6(9): 1355~1366

[13] Christopher Earhart, Nikhil R. Jana, Nandanan Erathodiyi et al.. Synthesis of carbohydrate-conjugated nanoparticles and quantum dots[J]. Langmuir, 2008, 24(12): 6215~6219

[14] R. Weissleder. A clearer vision for in vivo imaging[J]. Nature Biotechnol., 2001, 19(4): 316~317

[15] J. Aldana, N. Mallette, X. Peng. Size dependent dissociation pH of thiol-coated cadmium chalcogenides nanocrystals[J]. J. Am. Chem. Soc., 2005, 127(8): 2496~2504

[16] Hongzhe Sun, Hongyan Li, P. J. Sadler. Transferrin as a metal ion mediator[J]. Chem. Rev., 1999, 99(9): 2817~2842

[17] Peter T. Gomme, Karl B. McCann, Joseph Bertolini. Transferrin: structure, function and potential therapeutic actions[J]. Drug Discov. Today, 2005, 10(4): 267~273

翟鹏, 许改霞, 朱小妹, 王晓梅, 牛憨笨. 靶向量子点的合成及其在活体成像研究中的应用[J]. 中国激光, 2013, 40(1): 0104003. Zhai Peng, Xu Gaixia, Zhu Xiaomei, Wang Xiaomei, Niu Hanben. Synthesis of Targeting Quantum Dot and Its Applications in In Vivo Imaging Research[J]. Chinese Journal of Lasers, 2013, 40(1): 0104003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!