光谱学与光谱分析, 2011, 31 (12): 3251, 网络出版: 2012-01-05  

近红外光谱法在慈竹微纤丝角和纤维长度分析中的应用

Application of NIR Spectroscopy to Estimate of MFA and Fiber Length of Neosinocalamus affinis
作者单位
中国林业科学研究院木材工业研究所, 北京100091
摘要
应用近红外光谱法对慈竹微纤丝角和纤维长度进行快速预测研究。 采用X射线衍射法和显微镜法分别测定慈竹微纤丝角和纤维长度, 并用光纤漫反射模式采集近红外光谱, 对原始光谱分别进行消噪和消噪与正交信号校正相结合预处理, 建立偏最小二乘(PLS)数学模型, 对比分析模型预测能力。 结果表明, 慈竹微纤丝角和纤维长度原始光谱经消噪和正交信号校正二者结合预处理后, 所建PLS模型比相应原始光谱模型预测能力显著提高, 其预测模型相关系数(R)分别达到0.893 6和0.988 3, 预测标准差(RMSEP)为0.292 0和0.146 0, 校正预测模型均具有很好的相关性, 表明近红外光谱法可以实现慈竹微纤丝角和纤维长度的预测。
Abstract
Near infrared spectroscopy was applied to rapidly predict microfibril angle (MFA) and fiber length of Neosinocalamus affinis Keng by using a fiber-optic probe in diffuse reflectance mode. The MFA and fiber length were measured by X-ray diffractometry and optical microscope, respectively. Partial least squares (PLS) was used to build models based on raw and pretreated spectra, including noise spectra and noise combined with orthogonal signal correction (OSC) spectra. The results showed that the PLS models of MFA and fiber length, based on noise combined with OSC spectra, gave the strongest correlations, with correlation coefficient (R) of 0.893 6 and 0.988 3 and root mean standard error of prediction (RMSEP) of 0.292 0 and 0.146 0 in prediction set. The correlations between NIR predicted and MFA/fiber length actual values are very good. Therefore, it is concluded that MFA and fiber length of N. affinis can be estimated by NIR spectroscopy with sufficient accuracy.
参考文献

[1] JIANG Ze-hui(江泽慧). Bamboo and Rattan in the World(世界竹藤). Shenyang: Liaoning Science and Technology Publishing House(沈阳: 辽宁科学技术出版社), 2002. 388.

[2] HE Tian-jian(何天健). Journal of Bamboo Research(竹子研究汇刊), 1991, 10(4): 62.

[3] JIANG Jian-xin, YANG Zhong-kai, ZHU Li-wei, et al(蒋建新, 杨中开, 朱莉伟, 等). Journal of Beijing Forestry University(北京林业大学学报), 2008, 30(1): 128.

[4] ZHOU Fang-chun(周芳纯). Bamboo Research(竹类研究), 1998, (1): 178.

[5] MA Ling-fei, HAN Hong, MA Nai-xun, et al(马灵飞, 韩红, 马乃训, 等). Journal of Zhejiang Forestry College(浙江林学院学报), 1994, 11(3): 274.

[6] Schimleck L R, Evans R, Matheson A C. Journal of Wood Sci., 2002, 48(2): 132.

[7] Jones P D, Schimleck L R, Peter G F, et al. Can. J. Forest Research, 2005, 35: 85.

[8] Kelly S S, Rials T G, Snell R, et al. Wood Sci. Technol., 2004, 38(4): 257.

[9] Via B K, Shupe T F, Stine M, et al. Holzals Roh-und Werkstoff, 2005, 63(3): 231.

[10] Schimleck L R, Jones P D, Peter G F, et al. Holzforschung, 2004, 58(4): 375.

[11] Haukssom J B, Bergqvist G, Bergsten U, et al. Wood Science and Technology, 2001, 35(6): 475.

[12] ZHAO Rong-jun, ZHANG Li, HUO Xiao-mei, et al(赵荣军, 张黎, 霍小梅, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010, 30(9): 2355.

[13] WANG Yu-rong, QIN Dao-chun, REN Hai-qing, et al(王玉荣, 覃道春, 任海青, 等). Wood Processing Machinery(木材加工机械), 2007, 18(3): 34.

[14] Wold S, Antti H, Lindgren F, et al. Chemometrics and Intelligent Laboratory Systems, 1998, 44: 175.

[15] CHU Xiao-li, YUAN Hong-fu, LU Wan-zhen(褚小立, 袁洪福, 陆婉珍). Progress in Chemistry(化学进展), 2004, 16(4): 528.

孙柏玲, 柴宇博, 黄安民, 刘君良. 近红外光谱法在慈竹微纤丝角和纤维长度分析中的应用[J]. 光谱学与光谱分析, 2011, 31(12): 3251. SUN Bai-ling, CHAI Yu-bo, HUANG An-min, LIU Jun-liang. Application of NIR Spectroscopy to Estimate of MFA and Fiber Length of Neosinocalamus affinis[J]. Spectroscopy and Spectral Analysis, 2011, 31(12): 3251.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!