光学学报, 2016, 36 (12): 1206004, 网络出版: 2016-12-14   

基于自适应模拟退火算法的光学模式转换技术

Mode Conversion Technology Based on Adaptive Simulated Annealing Algorithm
作者单位
西南交通大学信息科学与技术学院信息光子与通信研究中心, 四川 成都 610031
摘要
模式转换技术是光学模分复用系统的关键技术之一, 用于实现任意模式之间的相互转换, 是模分复用系统实现信道接入、交换及分插复用的基础。采用纯相位空间光调制的方式实现光学模式转换, 通过改变加载于空间光调制器上的相位全息图, 控制不同模式的产生。对相位全息图产生算法进行了改进, 采用自适应的模拟退火算法, 结合图形处理器并行计算, 与传统的模拟退火算法相比, 运算效率提升7倍以上。并搭建了模式转换系统实验平台, 得到的实验结果验证了算法的有效性。
Abstract
The mode conversion technology is one of the key technologies of the mode division multiplexing, which can realize the transformation between arbitrary optical modes. Moreover, it is the basis for the realization of channel access, switching and multiplexing. A spatial light modulator is used to achieve different mode distributions. The algorithm to generating phase hologram for mode conversion is improved based on spatial light modulator. By using the adaptive simulated annealing algorithm with graphics processing unit parallel computing, a more than seven fold increase in the computational efficiency of the simulated anealing algorithm is obtained. Finally, a mode conversion platform is established, and the experiment is carried out to prove the effectiveness of the proposed method.
参考文献

[1] Essiambre R J, Ryf R, Fontaine N K, et al. Breakthroughs in photonics 2012: Space-division multiplexing in multimode and multicore fibers for high-capacity optical communication[J]. IEEE Photonics Journal, 2013, 5(2): 0701307.

[2] Koebele C, Salsi M, Sperti D, et al. Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer[J]. Optics Express, 2011, 19(17): 16593-16600.

[3] Ip E, Bai N, Huang Y K, et al. 88×3×112 Gb/s WDM transmission over 50 km of three-mode fiber with inline few-mode fiber amplifier[C]. 37th European Conference and Exhibition on Optical Communications (ECOC), 2011, Th.13.C:Th.13.C2.

[4] Ryf R, Randel S, Gnauck A H, et al. Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing[C]. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2011, PDPB: PDPB10.

[5] Giles I,Obeysekara A, Chen R, et al. All fiber components for multimode SDM systems[C]. Photonics Society Summer Topical Meeting Series, 2012: 212-213.

[6] Uematsu T, Saitoh K, Hanzawa N, et al. Low-loss and broadband PLC-type mode (de) multiplexer for mode-division multiplexing transmission[C]. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013, OTh1B: OTh1B. 5.

[7] Leon-Saval S G, Fontaine N K, Salazar-Gil J R, et al. Mode-selective photonic lanterns for space-division multiplexing[J]. Optics Express, 2014, 22(1): 1036-1044.

[8] Carpenter J, Thomsen B C, Wilkinson T D. Degenerate mode-group division multiplexing[J]. Journal of Lightwave Technology, 2012, 30(24): 3946-3952.

[9] 杜延龙, 王玉荣, 孟祥峰, 等. 基于4f系统的Gabor同轴相移数字全息[J]. 激光与光电子学进展, 2013, 50(6): 060902.

    Du Yanlong, Wang Yurong, Meng Xiangfeng, et al. Gabor in-line phase-shifting digital holography based on 4f system[J]. Laser & Optoelectronics Progress, 2013, 50(6): 060902.

[10] Lan M, Gao L, Yu S, et al. An arbitrary mode converter with high precision for mode division multiplexing in optical fibers[J]. Journal of Modern Optics, 2015, 62(5): 348-352.

[11] 李 灿, 田逢春, 陈建军, 等. 基于液晶纯相位光调制器的4f系统去噪方法[J]. 光学技术, 2011, 37(1): 14-18.

    Li Can, Tian Fengchun, Chen Jianjun, et al. A denoising method for the 4f system based on phase-only liquid crystal spatial light modulator[J]. Optical Technique, 2011, 37(1): 14-18.

[12] Stepniak G, Maksymiuk L, Siuzdak J. Increasing multimode fiber transmission capacity by mode selective spatial light phase modulation[C]. 36th European Conference and Exhibition on Optical Communication (ECOC), 2010: P6. 03.

[13] 兰名荥. 模分复用光纤通信系统中模式控制关键技术研究[D]. 北京: 北京邮电大学, 2015.

    Lan Mingying. Research on the key technologies of mode control for mode division multiplexing in optical fiber communications[D]. Beijing: Beijing University of Posts and Telecommunications, 2015.

[14] Amagai Y, Shoji K, Toyama F, et al. Optimization by simulated annealing[J]. Science, 1983, 42(3): 671-680.

[15] 杨若黎, 顾基发. 一种高效的模拟退火全局优化算法[J]. 系统工程理论与实践, 1997, 17(5): 29-35.

    Yang Ruoli, Gu Jifa. An efficient simulated annealing algorithm for global optimization[J]. Systems Engineering - Theory & Practice, 1997, 17(5): 29-35.

[16] 齐跃峰, 李彩玲, 江 鹏, 等. 利用模拟退火算法研究光纤布拉格光栅的光谱形状复用技术[J]. 光学学报, 2015, 35(9): 0906004.

    Qi Yuefeng, Li Cailing, Jiang Peng, et al. Spectral shape multiplexing technology of fiber Bragg gratings using simulated annealing algorithm[J]. Acta Optica Sinica, 2015, 35(9): 0906004.

[17] 王佳舟, 庞 辉, 张 满, 等. 一种适用于多波长的衍射元件设计方法[J]. 光学学报, 2015, 35(10): 1005002.

    Wang Jiazhou, Pang Hui, Zhang Man, et al. Design method for multi-wavelength diffractive optical element[J]. Acta Optica Sinica, 2015, 35(10): 1005002.

李路遥, 闫连山, 叶佳, 郑春雨, 潘炜, 罗斌. 基于自适应模拟退火算法的光学模式转换技术[J]. 光学学报, 2016, 36(12): 1206004. Li Luyao, Yan Lianshan, Ye Jia, Zheng Chunyu, Pan Wei, Luo Bin. Mode Conversion Technology Based on Adaptive Simulated Annealing Algorithm[J]. Acta Optica Sinica, 2016, 36(12): 1206004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!