中国激光, 2015, 42 (4): 0403004, 网络出版: 2015-03-25   

激光焊接TRIP590钢焊缝微观结构及形成机理研究 下载: 581次

Characterization and Formation Mechanism of the Weld Interface of TRIP590 Steel Laser Welding
作者单位
1 山东建筑大学材料科学与工程学院, 山东 济南 250101
2 北京航空制造工程研究所, 北京 100084
摘要
通过扫描电子显微镜(SEM)、电子背散射分析(EBSD),研究了TRIP590 钢激光焊接接头的界面微观结构和形成机理。SEM 分析表明,焊接接头焊缝区组织为马氏体组织,热影响区组织主要是贝氏体和铁素体,离焊缝位置越近,马氏体量越多。EBSD 分析表明,母材区的晶粒分布均匀,都是大角度晶界,没有明显的择优取向。热影响区晶粒大小不均,贝氏体有相同或相近的取向。焊缝区板条尺寸最为粗大,有明显的织构。残余奥氏体弥散分布在晶粒内部或晶界,焊缝和热影响区晶界取向差都是1°~5°之间的小角度晶界,大量的小角度晶界导致焊缝与热影响区的塑性要小于母材。
Abstract
Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) are used to study the interface microstructure and formation mechanism of laser welding joints of TRIP590 steel. Analyzes of SEM indicate that the microstructure of weld zone is matensite, and the microstructure of heat affected zone (HAZ) are bainite and ferrite. The closer of the weld, the more martensite HAZ has. The results of EBSD analysis show that there is no obvious preferred orientation and uniform sizes of grains in base zone, and most of grain boundaries are high angle grain boundaries. The grain size of HAZ is unequal and the bainite has the same or similar orientation. The laths size of weld zone is coarser and it has obvious texture. Retained austenite is dispersed in grains and grain boundaries. The orientation difference of grain boundary of weld and HAZ is low-angle boundary which is between 1°~5°. A large amount of low-angle boundary would lead to the plasticity loss of weld and HAZ compared with base metal.
参考文献

[1] Peng Y, Qi Y H, He C H, et al.. Microstructure and its formation mechanism of weld metal of Al-bearing TRIP Steel[J]. Materials Science Forum, 2010, 638(4): 3591-3596.

[2] 刘其斌, 白丽锋. 超高强度30CrMnSiNi2A 钢的激光焊接组织及性能[J]. 中国激光, 2009, 36(8): 2182-2186.

    Liu Qibin, Bai Lifeng. Microstructure and properties of ultra- high strength steel 30CrMnSiNi2A by laser welding[J]. Chinese J Lasers, 2009, 36(8): 2182-2186.

[3] U Reisgen, M Schleser, O Mokrov, et al.. Optimization of laser welding of DP/TRIP steel sheets using statistical approach[J]. Optics & Laser Technology, 2012, 44(1): 255-262.

[4] S R Niezgoda, R J Mccabe, C N Tome, et al.. Quantification of strain and orientation measurement error in cross-correlation EBSD in hexagonal close-packed materials[J]. Scripta Materialia, 2012, 67(10): 818-821.

[5] T P Van, K Jochen, T Bohlke, et al.. Simulation of sheet metal forming incorporating EBSD data[J]. Journal of Materials Processing Technology, 2012, 212(12): 2659-2668.

[6] 虞钢, 赵树森, 张永杰, 等. 异种金属激光焊接关键问题研究[J]. 中国激光, 2009, 36(2): 261-268.

    Yu Gang, Zhao Shusen, Zhang Yongjie, et al.. Research on key issues of laser welding of dissimilar metal[J]. Chinese J Lasers, 2009, 36(2): 261-268.

[7] 景财年, 范吉超, 倪晓梅, 等. 激光焊接不等厚异种钢接头组织与性能研究[J]. 中国激光, 2014, 41(8): 0803005.

    Jing Cainian, Fan Jichao, Ni Xiaomei, et al.. Microstructure and mechanical properties of laser welded joints for dissimilar steel with different thicknesses[J]. Chinese J Lasers, 2014, 41(8): 0803005.

[8] 王国庆, 宋志华, 吴爱萍, 等. Ti3Al激光焊接接头组织与织构的EBSD 分析[J]. 焊接学报, 2011, 32(4): 63-66.

    Wang Guoqing, Song Zhihua, Wu Aiping, et al.. EBSD analysis of microstructure and texture of Ti3Al alloy laser welded joints[J]. Transactions of The China Welding Institution, 2011, 32(4): 63-66.

[9] N A Bonasso, F Wagner, S Berbenni, et al.. A study of the heterogeneity of plastic deformation in IF steel by EBSD[J]. Materials Science and Engineering A, 2012, 548: 56-63.

[10] D Howell, S Piazolo, D P Dobson, et al.. Quantitative characterization of plastic deformation of single diamond crystals: A high pressure high temperature (HPHT) experimental deformation study combined with electron backscatter diffraction (EBSD) [J]. Diamond and Related Materials, 2012, 30: 20-30.

[11] E Ahmed, U Reisgen, M Schleser, et al.. On formability of tailor laser welded blanks of DP/TRIP steel sheets[J]. Science and Technology of Welding and Joining, 2010, 15(5): 337-342.

[12] U Reisgen, M Schleser, O Mokrov, et al.. Statistical modeling of laser welding of DP/TRIP steel sheets[J]. Optics & Laser Technology, 2012, 44(1): 92-101.

[13] S Wronski, J Tarasiuk, B Bacroix, et al.. Investigation of plastic deformation heterogeneities in duplex steel by EBSD[J]. Materials Characterization, 2012, 73: 52-60.

[14] M Karlsen, J Hjelen, O Grong, et al.. SEM/EBSD based in situ studies of deformation induced phase transformations in supermartensitic stainless steels[J]. Materials Science and Technology, 2007, 24(1): 64-72.

[15] F Bachmann, R Hielscher, H Schaeben, et al.. Grain detection from 2d and 3d EBSD data-Specification of the MTEX algorithm[J]. Ultramicroscopy, 2011, 111(12): 1720-1733.

[16] M F Kartal, F P E Dunne, A J Wilkinson, et al.. Determination of the complete microscale residual stress tensor at a subsurface carbide particle in a single-crystal superalloy from free-surface EBSD[J]. Acta materialia, 2012, 60(13/14): 5300-5310.

景财年, 范吉超, 王丛雷, 徐淑波, 刘鹏, 李怀学. 激光焊接TRIP590钢焊缝微观结构及形成机理研究[J]. 中国激光, 2015, 42(4): 0403004. Jing Cainian, Fan Jichao, Wang Conglei, Xu Shubo, Liu Peng, Li Huaixue. Characterization and Formation Mechanism of the Weld Interface of TRIP590 Steel Laser Welding[J]. Chinese Journal of Lasers, 2015, 42(4): 0403004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!