光学学报, 2012, 32 (2): 0204002, 网络出版: 2012-01-11   

光学读出非制冷红外成像技术的光学灵敏度分析

Analysis of Optical Readout Sensitivity for Uncooled Infrared Imaging Based on Optical Readout
作者单位
1 中国科学技术大学中国科学院材料力学行为和设计重点实验室, 安徽 合肥 230027
2 中国科学院微电子研究所, 北京 100029
摘要
不同于传统的非制冷红外成像技术,提出了基于微电子机械系统(MEMS)的新概念光学读出非制冷红外成像技术。它的光学读出系统基于空间刀口滤波原理,具有高灵敏度、高分辨率和高抗震性等优点,但同时也受到了反光板的弯曲变形、粗糙度等复杂因素的影响。在大量实验数据的基础上,利用夫琅禾费近场衍射理论,建立了复杂因素下光学灵敏度的理论分析模型,详细分析了刀口滤波位置、反光板的长度、曲率半径、粗糙度、LED光源的强度以及扩展宽度等对光学灵敏度的影响,并提出了通过极限操作使系统的光学灵敏度最大化的光学优化方法。
Abstract
Much different from the conventional uncooled infrared imaging technique, a new optical readout uncooled infrared detector based on micro-electro-mechanical system (MEMS) is proposed. This optical readout system employs a knife filter, which has the advantages of high sensitivity, high resolution, and being highly aseismic. However, it is also influenced by various factors such as the radius and roughness of the reflector. According to the experimental validations and the theory of Fraunhofer diffraction, a theoretical model of the optical sensitivity is established, and the influences of various factors (such as the location of the knife filter, the length of the reflector, the radius of the reflector, the roughness of the reflector, the intensity of the LED, the width of the LED) to the optical sensitivity are analyzed. Based on these analyses, an optimization operation to maximize the optical sensitivity is also established.
参考文献

[1] J. M. Lloyd. Thermal Imaging Systems [M]. New York: Plenum Press, 1975

[2] J. L. Miller. Principles of Infrared Technology [M]. New York: Van Nostram Reinhold, 1994

[3] A. Rogalski. Infrared detectors: status and trends [J]. Progress in Quantum Electron., 2003, 27(4): 59~210

[4] J. Varesi, J. Lai, T. Perazzo et al.. Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors [J]. Appl. Phys. Lett., 1997, 71(3): 306~308

[5] Y. Zhao, M. Mao, R. Horowitz et al.. Optomechanical uncooled infrared imaging system: design, microfabrication, and performance [J]. J. Micro Electro Mechanical Systems, 2002, 11(2): 136~146

[6] T. Ishizuya, J. Suzuki, K. Akagawa et al.. 160×120 pixels optically readable bi-material infrared detector [C]. IEEE Micro Electro Mechanical Systems, 2002. 578~581

[7] M. Erdtmann, L. Zhang, G. Jin et al.. Optical readout photomechanical imager: from design to implementation [C]. SPIE, 2009, 7298: 72980I

[8] Duan Zhihui, Zhang Qingchuan, Wu Xiaoping et al.. Uncooled optically readable bimaterial micro-cantilever infrared imaging device [J]. Chin. Phys. Lett., 2003, 20(12): 2130~2132

[9] Miao Zhengyu, Zhang Qingchuan, Guo Zheying et al.. An optical readout method for microcantilever array sensing and its sensitivity analysis [J]. Opt. Lett., 2007, 32(6): 594~596

[10] Shi Haitao, Zhang Qingchuan, Qian Jian et al.. Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging [J]. Opt. Express, 2009, 17(6): 4367~4381

[11] Cheng Teng, Zhang Qingchuan, Jiao Binbin et al.. Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation [J]. J. Opt. Soc. Am. A, 2009, 26(11): 2353~2361

[12] 潘亮, 张青川, 伍小平 等. 基于MEMS的光力学红外成像 [J]. 实验力学, 2004, 19(4): 403~406

    Pan Liang, Zhang Qingchuan, Wu Xiaoping et al.. MEMS based optomechanical infrared imaging[J]. J. Experimental Mechanics, 2004, 19(4): 403~406

[13] 缪正宇, 张青川, 陈大鹏 等. 双材料微梁阵列室温物体红外成像 [J]. 物理学报, 2006, 55(7): 3208~3214

    Miao Zhengyu, Zhang Qingchuan, Chen Dapeng et al.. Bi-material microcantilever array room-temperature IR imaging [J]. Acta Physica Sinica, 2006, 55(7): 3208~3214

[14] 熊志铭, 张青川, 陈大鹏 等. 光学读出微梁阵列红外成像及性能分析 [J]. 物理学报, 2007, 56(5): 2529~2535

    Xiong Zhiming, Zhang Qingchuan, Chen Dapeng et al.. Optical-readout micro-cantilever array IR imaging system and performance analysis [J]. Acta Physica Sinica, 2007, 56(5): 2529~2535

[15] Dong Fengliang, Zhang Qingchuan, Chen Dapeng et al.. An uncooled optically readable infrared imaging detector [J]. Sensor and Actuator A, 2007, 133(1): 236~242

[16] Xiong Zhiming, Zhang Qingchuan, Gao Jie et al.. The pressure-dependent performance of substrate-free FPA in uncooled infrared imaging system [J]. J. Appl. Phys., 2007, 102(11): 113524

[17] 董凤量, 焦斌斌, 张青川 等. 光学读出非制冷红外成像的最新进展 [J]. 实验力学, 2007, 22(3): 401~406

    Dong Fengliang, Jiao Binbin, Zhang Qingchuan et al.. Advance in optically readable uncooled infrared imaging [J]. J. Experimental Mechanics, 2007, 22(3): 401~406

[18] Cheng Teng, Zhang Qingchuan, Wu Xiaoping et al.. Uncooled infrared imaging using a substrate-free focal plane array [J]. IEEE Electron Device Lett., 2008, 29(11): 1218~1221

[19] 王志, 许向东, 周东 等. 热应力对非制冷红外焦平面微桥的影响及控制研究[J]. 光学学报, 2011, 31(3): 0331002

    Wang Zhi, Xu Xiangdong, Zhou Dong et al.. Study on effect of thermal stress on microbridges of uncooled IRFPA and controlling methods [J]. Acta Optica Sinica, 2011, 31(3): 0331002

程腾, 张青川, 高杰, 毛亮, 伍小平, 陈大鹏. 光学读出非制冷红外成像技术的光学灵敏度分析[J]. 光学学报, 2012, 32(2): 0204002. Cheng Teng, Zhang Qingchuan, Gao Jie, Mao Liang, Wu Xiaoping, Chen Dapeng. Analysis of Optical Readout Sensitivity for Uncooled Infrared Imaging Based on Optical Readout[J]. Acta Optica Sinica, 2012, 32(2): 0204002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!