激光与光电子学进展, 2018, 55 (12): 120901, 网络出版: 2019-08-01  

定量干涉显微流式细胞仪的研究与设计 下载: 1139次

Research and Design of Quantitative Interferometric Microscopic Cytometer
作者单位
1 西安工业大学电子信息工程学院, 陕西 西安 710032
2 上海电力学院电子与信息工程学院, 上海 200090
3 中国工程物理研究院流体物理研究所, 四川 绵阳 621900
4 江南大学理学院光电信息科学与工程系, 江苏 无锡 214122
引用该论文

闫克丁, 薛亮, 黄华川, 王绶玙. 定量干涉显微流式细胞仪的研究与设计[J]. 激光与光电子学进展, 2018, 55(12): 120901.

Keding Yan, Liang Xue, Huachuan Huang, Shouyu Wang. Research and Design of Quantitative Interferometric Microscopic Cytometer[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120901.

参考文献

[1] 杨萍, 魏丹, 庞恺, 等. 在体光声流式细胞术在循环肿瘤细胞检测中的研究进展[J]. 激光与光电子学进展, 2017, 54(9): 090001.

    Yang P, Wei D, Pang K, et al. Progress in detection of circulating tumor cell by in vivo photoacoustic flow cytometry[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090001.

[2] 卜敏, 胡双双, 陶兆禾, 等. 白细胞对偏振光的散射特性及散射特性与细胞结构的关系[J]. 中国激光, 2017, 44(10): 1007001.

    Bu M, Hu S S, Tao Z H, et al. Scattering characteristics of leukocytes on polarized light and relationship between scattering characteristics and cell structure[J]. Chinese Journal of Lasers, 2017, 44(10): 1007001.

[3] 李灿, 郭帮辉, 孙竹. 多光谱消色差成像流式细胞仪的光学系统设计[J]. 光学学报, 2016, 36(9): 0922002.

    Li C, Guo B H, Sun Z. Optical system design of multispectral achromatic imaging flow cytometer[J]. Acta Optica Sinica, 2016, 36(9): 0922002.

[4] Stephens D J, Allan V J. Light microscopy techniques for live cell imaging[J]. Science, 2003, 300(5616): 82-86.

[5] Greenbaum A, Luo W, Su T W, et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9): 889-895.

[6] Ramachandraiah H, Amasia M, Cole J, et al. Lab-on-DVD: standard DVD drives as a novel laser scanning microscope for image based point of care diagnostics[J]. Lab on a Chip, 2013, 13(8): 1578-1585.

[7] Mir M, Wang Z, Tangella K, et al. Diffraction phase cytometry: blood on a CD-ROM[J]. Optics Express, 2009, 17(4): 2579-2585.

[8] di Caprio G, ei Mallahi A, Ferraro P, et al. . 4D tracking of clinical seminal samples for quantitative characterization of motility parameters[J]. Biomedical Optics Express, 2014, 5(3): 690-700.

[9] Merola F, Miccio L, Paturzo M, et al. Driving and analysis of micro-objects by digital holographic microscope in microfluidics[J]. Optics Letters, 2011, 36(16): 3079-3081.

[10] Rappaz B, Barbul A, Emery Y, et al. Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer[J]. Cytometry Part A, 2008, 73(10): 895-903.

[11] Moon I, Javidi B, Yi F L, et al. Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells[J]. Optics Express, 2012, 20(9): 10295-10309.

[12] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006, 442(7101): 381-386.

[13] Cui X Q, Lee L M, Heng X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Sciences, 2008, 105(31): 10670-10675.

[14] Zheng G, Lee S A, Antebi Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[J]. Proceedings of the National Academy of Sciences, 2011, 108(41): 16889-16894.

[15] Schonbrun E, Ye W N, Crozier K B. Scanning microscopy using a short-focal-length Fresnel zone plate[J]. Optics Letters, 2009, 34(14): 2228-2230.

[16] Schonbrun E, Steinvurzel P E, Crozier K B. A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array[J]. Optics Express, 2011, 19(2): 1385-1394.

[17] Gorthi S S, Schaak D, Schonbrun E. Fluorescence imaging of flowing cells using a temporally coded excitation[J]. Optics Express, 2013, 21(4): 5164-5170.

[18] Schonbrun E, di Caprio G, Schaak D. Dye exclusion microfluidic microscopy[J]. Optics Express, 2013, 21(7): 8793-8798.

[19] Wang S Y, Xue L, Li H L, et al. Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer[J]. Applied Physics B, 2014, 116(1): 235-239.

[20] Xue L, Vargas J, Wang S Y, et al. Quantitative interferometric microscopy cytometer based on regularized optical flow algorithm[J]. Optics Communications, 2015, 350: 222-229.

[21] Xue L, Wang S Y, Yan K D, et al. Gravity driven high throughput phase detecting cytometer based on quantitative interferometric microscopy[J]. Optics Communications, 2014, 316: 5-9.

[22] Girshovitz P, Shaked N T. Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization[J]. Biomedical Optics Express, 2012, 3(8): 1757-1773.

[23] Tsinopoulos S V, Polyzos D. Scattering of He-Ne laser light by an average-sized red blood cell[J]. Applied Optics, 1999, 38(25): 5499-5510.

[24] Vargas J, Quiroga J A, Belenguer T. Phase-shifting interferometry based on principal component analysis[J]. Optics Letters, 2011, 36(8): 1326-1328.

[25] Vargas J, Quiroga J A, Belenguer T. Analysis of the principal component algorithm in phase-shifting interferometry[J]. Optics Letters, 2011, 36(12): 2215-2217.

[26] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(1): 156-160.

[27] Ikeda T, Popescu G, Dasari R R, et al. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Optics Letters, 2005, 30(10): 1165-1167.

[28] Wang S Y, Xue L, Lai J C, et al. An improved phase retrieval method based on Hilbert transform in interferometric microscopy[J]. Optik - International Journal for Light and Electron Optics, 2013, 124(14): 1897-1901.

[29] Wang S Y, Sun N, Xue L, et al. Radial Hilbert transform phase retrieval algorithm for circular carrier interferogram[J]. Optics Communications, 2013, 304: 148-152.

[30] Xue L, Lai J C, Wang S Y, et al. Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells[J]. Biomedical Optics Express, 2011, 2(4): 987-995.

[31] Vargas J, Quiroga J A. Sorzano C O S, et al. Two-step interferometry by a regularized optical flow algorithm[J]. Optics Letters, 2011, 36(17): 3485-3487.

闫克丁, 薛亮, 黄华川, 王绶玙. 定量干涉显微流式细胞仪的研究与设计[J]. 激光与光电子学进展, 2018, 55(12): 120901. Keding Yan, Liang Xue, Huachuan Huang, Shouyu Wang. Research and Design of Quantitative Interferometric Microscopic Cytometer[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120901.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!