光学学报, 2019, 39 (4): 0428003, 网络出版: 2019-05-10   

基于外部时钟信号触发重采样的激光频率调制测距方法 下载: 938次

Laser Frequency Modulated Ranging Method Based on Triggering Resample from Outside Clock Signal
作者单位
天津大学精密测试技术及仪器国家重点实验室, 天津 300072
引用该论文

张桐, 曲兴华, 张福民. 基于外部时钟信号触发重采样的激光频率调制测距方法[J]. 光学学报, 2019, 39(4): 0428003.

Tong Zhang, Xinghua Qu, Fumin Zhang. Laser Frequency Modulated Ranging Method Based on Triggering Resample from Outside Clock Signal[J]. Acta Optica Sinica, 2019, 39(4): 0428003.

参考文献

[1] 宦克为, 郑峰, 石晓光, 等. 基于调频连续波原理的三维成像激光雷达系统[J]. 长春理工大学学报(自然科学版), 2008, 31(4): 61-64.

    宦克为, 郑峰, 石晓光, 等. 基于调频连续波原理的三维成像激光雷达系统[J]. 长春理工大学学报(自然科学版), 2008, 31(4): 61-64.

    Huan K W, Zheng F, Shi X G, et al. The system of 3D LADAR base on FM/CW principles[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2008, 31(4): 61-64.

    Huan K W, Zheng F, Shi X G, et al. The system of 3D LADAR base on FM/CW principles[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2008, 31(4): 61-64.

[2] 叶岚, 刘倩, 胡庆武. 基于LIDAR点云数据的电力线提取和拟合方法研究[J]. 测绘与空间地理信息, 2010, 33(5): 30-34.

    叶岚, 刘倩, 胡庆武. 基于LIDAR点云数据的电力线提取和拟合方法研究[J]. 测绘与空间地理信息, 2010, 33(5): 30-34.

    Ye L, Liu Q, Hu Q W. Research of power line fitting and extraction techniques based on LIDAR point cloud data[J]. Geomatics & Spatial Information Technology, 2010, 33(5): 30-34.

    Ye L, Liu Q, Hu Q W. Research of power line fitting and extraction techniques based on LIDAR point cloud data[J]. Geomatics & Spatial Information Technology, 2010, 33(5): 30-34.

[3] 林祥国, 张继贤. 架空输电线路机载激光雷达点云电力线三维重建[J]. 测绘学报, 2016, 45(3): 347-353.

    林祥国, 张继贤. 架空输电线路机载激光雷达点云电力线三维重建[J]. 测绘学报, 2016, 45(3): 347-353.

    Lin X G, Zhang J X. 3D power line reconstruction from airborne LiDAR point cloud of overhead electric power transmission corridors[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 347-353.

    Lin X G, Zhang J X. 3D power line reconstruction from airborne LiDAR point cloud of overhead electric power transmission corridors[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 347-353.

[4] 潘青, 张引发, 邓大鹏, 等. 一种改进的OFDR技术在光纤故障定位中的应用[J]. 光通信技术, 2015, 39(7): 38-40.

    潘青, 张引发, 邓大鹏, 等. 一种改进的OFDR技术在光纤故障定位中的应用[J]. 光通信技术, 2015, 39(7): 38-40.

    Pan Q, Zhang Y F, Deng D P, et al. Application of an improved OFDR technology in optical fiber fault positioning[J]. Optical Communication Technology, 2015, 39(7): 38-40.

    Pan Q, Zhang Y F, Deng D P, et al. Application of an improved OFDR technology in optical fiber fault positioning[J]. Optical Communication Technology, 2015, 39(7): 38-40.

[5] Mateo A B, Barber Z W. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar[J]. Applied Optics, 2015, 54(19): 5911-5916.

    Mateo A B, Barber Z W. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar[J]. Applied Optics, 2015, 54(19): 5911-5916.

[6] 曲兴华, 职广涛, 张福民, 等. 利用信号拼接提高调频连续波激光测距系统的分辨力[J]. 光学精密工程, 2015, 23(1): 40-47.

    曲兴华, 职广涛, 张福民, 等. 利用信号拼接提高调频连续波激光测距系统的分辨力[J]. 光学精密工程, 2015, 23(1): 40-47.

    Qu X H, Zhi G T, Zhang F M, et al. Improvement of resolution of frequency modulated continuous wave laser ranging system by signal splicing[J]. Optics and Precision Engineering, 2015, 23(1): 40-47.

    Qu X H, Zhi G T, Zhang F M, et al. Improvement of resolution of frequency modulated continuous wave laser ranging system by signal splicing[J]. Optics and Precision Engineering, 2015, 23(1): 40-47.

[7] 时光, 王文. 单激光器复用法提高调频连续波激光测距分辨率[J]. 红外与毫米波学报, 2016, 35(3): 363-367.

    时光, 王文. 单激光器复用法提高调频连续波激光测距分辨率[J]. 红外与毫米波学报, 2016, 35(3): 363-367.

    Shi G, Wang W. Single laser complex method to improve the resolution of FMCW laser ranging[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 363-367.

    Shi G, Wang W. Single laser complex method to improve the resolution of FMCW laser ranging[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 363-367.

[8] 刘颖, 陈殿仁, 陈磊, 等. 基于周期Choi-Williams Hough变换的线性调频连续波信号参数估计算法[J]. 电子与信息学报, 2015, 37(5): 1135-1140.

    刘颖, 陈殿仁, 陈磊, 等. 基于周期Choi-Williams Hough变换的线性调频连续波信号参数估计算法[J]. 电子与信息学报, 2015, 37(5): 1135-1140.

    Liu Y, Chen D R, Chen L, et al. Parameters estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J]. Journal of Electronics & Information Technology, 2015, 37(5): 1135-1140.

    Liu Y, Chen D R, Chen L, et al. Parameters estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J]. Journal of Electronics & Information Technology, 2015, 37(5): 1135-1140.

[9] 朱文涛, 郑纪彬, 苏涛, 等. 线性调频连续波信号的检测和参数估计[J]. 电子与信息学报, 2013, 35(7): 1562-1568.

    朱文涛, 郑纪彬, 苏涛, 等. 线性调频连续波信号的检测和参数估计[J]. 电子与信息学报, 2013, 35(7): 1562-1568.

    Zhu W T, Zheng J B, Su T, et al. Detection and parameter estimation of linear frequency modulation continuous wave signal[J]. Journal of Electronics & Information Technology, 2013, 35(7): 1562-1568.

    Zhu W T, Zheng J B, Su T, et al. Detection and parameter estimation of linear frequency modulation continuous wave signal[J]. Journal of Electronics & Information Technology, 2013, 35(7): 1562-1568.

[10] Roos P A, Reibel R R, Berg T, et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Optics Letters, 2009, 34(23): 3692-3694.

    Roos P A, Reibel R R, Berg T, et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Optics Letters, 2009, 34(23): 3692-3694.

[11] Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Applied Optics, 2005, 44(35): 7630-7634.

    Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Applied Optics, 2005, 44(35): 7630-7634.

[12] Iiyama K, Wang L T, Hayashi K I. Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry[J]. Journal of Lightwave Technology, 1996, 14(2): 173-178.

    Iiyama K, Wang L T, Hayashi K I. Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry[J]. Journal of Lightwave Technology, 1996, 14(2): 173-178.

[13] Greiner C, Boggs B, Wang T, et al. Laser frequency stabilization by means of optical self-heterodyne beat-frequency control[J]. Optics Letters, 1998, 23(16): 1280-1282.

    Greiner C, Boggs B, Wang T, et al. Laser frequency stabilization by means of optical self-heterodyne beat-frequency control[J]. Optics Letters, 1998, 23(16): 1280-1282.

[14] Gorju G, Jucha A, Jain A, et al. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control[J]. Optics Letters, 2007, 32(5): 484-487.

    Gorju G, Jucha A, Jain A, et al. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control[J]. Optics Letters, 2007, 32(5): 484-487.

[15] O'Connor S. Bernacil M A, Dekelaita A, et al. 100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers[J]. Proceedings of SPIE, 2009, 7168: 716825.

    O'Connor S. Bernacil M A, Dekelaita A, et al. 100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers[J]. Proceedings of SPIE, 2009, 7168: 716825.

[16] Choi D H, Yoshimura R, Ohbayashi K. Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography[J]. Biomedical Optics Express, 2013, 4(12): 2962-2987.

    Choi D H, Yoshimura R, Ohbayashi K. Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography[J]. Biomedical Optics Express, 2013, 4(12): 2962-2987.

[17] Shi G, Zhang F M, Qu X H, et al. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications[J]. Optical Engineering, 2014, 53(12): 122402.

    Shi G, Zhang F M, Qu X H, et al. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications[J]. Optical Engineering, 2014, 53(12): 122402.

[18] Baumann E, Giorgetta F R, Coddington I, et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements[J]. Optics Letters, 2013, 38(12): 2026-2028.

    Baumann E, Giorgetta F R, Coddington I, et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements[J]. Optics Letters, 2013, 38(12): 2026-2028.

[19] AnghelA, VasileG, CacoveanuR, et al. FMCW transceiver wideband sweep nonlinearity software correction[C]. 2013 IEEE Radar Conference, 2013: 13736289 .

    AnghelA, VasileG, CacoveanuR, et al. FMCW transceiver wideband sweep nonlinearity software correction[C]. 2013 IEEE Radar Conference, 2013: 13736289 .

张桐, 曲兴华, 张福民. 基于外部时钟信号触发重采样的激光频率调制测距方法[J]. 光学学报, 2019, 39(4): 0428003. Tong Zhang, Xinghua Qu, Fumin Zhang. Laser Frequency Modulated Ranging Method Based on Triggering Resample from Outside Clock Signal[J]. Acta Optica Sinica, 2019, 39(4): 0428003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!