作者单位
摘要
1 天津大学精密仪器与光电子工程学院,天津 300072
2 天津大学精密测试技术及仪器国家重点实验室,天津 300072
现代测量技术中,频率调制连续波激光雷达结合了传统雷达和激光干涉测量的优点,凭借其非接触性、测量范围大、分辨率高和抗干扰能力强等特性,在大尺寸空间精密测量、微小测量以及生物计量等领域发挥着至关重要的作用。但实际应用中,激光光源的频率调制不能呈现出完全线性,使得频率调制连续波激光雷达技术的测量精度严重下降。所以,如何抑制激光的调频非线性带来的影响成为频率调制连续波激光雷达测量领域的一项研究热点。本文介绍了频率调制连续波激光雷达的工作原理,根据频率调制非线性校正方案的不同,针对性地介绍和分析了四种应用较为广泛和部分特殊的非线性校正方法,并进行了总结和展望。

频率调制连续波 激光雷达 干涉测量 非线性校正 frequency modulation continuous wave LiDAR interferometry nonlinear correction 
光电工程
2022, 49(7): 210438
宋鲁明 1,2,3张福民 2,3孙栋 1,3林洪沂 1,3[ ... ]张乾 1,3
作者单位
摘要
1 厦门理工学院 光电与通信工程学院,福建 厦门 361024
2 天津大学 精密测试技术及仪器国家重点实验室,天津 300072
3 福建省光电技术与器件重点实验室,福建 厦门 361024
绝对距离测量的精度对于航空航天科技、精密装备加工、卫星编队、行星空间定位等领域具有重要意义。近年来,基于可调谐激光器的扫频干涉(FSI)测距技术以其突破2π模糊度、无测量死区、不接触且不依赖导轨等优点成为国际研究热点。文中在阐述FSI测距原理的基础上,简要分析了测距系统中部分器件的类型与性能,如可调谐激光器、探测器等,以及影响测距系统不确定度的因素,包括非线性扫频、多普勒频移、色散失配等方面,着重介绍了国内外对影响不确定度因素的相应补偿方法,并对补偿后的测量结果进行对比与总结。
FSI 非线性扫频 多普勒频移 色散失配 不确定度 FSI non-linear frequency sweep Doppler frequency shift dispersion mismatch uncertainty 
红外与激光工程
2022, 51(5): 20210406
作者单位
摘要
1 天津职业技术师范大学 机械工程学院,天津 300222
2 天津大学 天津大学精密测试技术及仪器国家重点实验室,天津 300072
3 天津理工大学 电气电子工程学院,天津 300384
在基于视觉图像的位姿测量中,非线性位姿测量算法的全局收敛存在不确定性,测量结果取决于初值的选取,不能保证位姿测量的鲁棒性。线性位姿测量算法对图像处理的要求比较高,如果定位特征点图像坐标提取不够精确,会导致位姿测量精度降低。在自然光条件下,相机采集定位特征点图像,图像中高亮度区域的存在对定位特征点提取精度产生影响,进而使有效定位特征点数量减少,影响位姿测量精度。针对上述问题,文中提出了一种基于最佳偏振角的线性位姿测量方法:在相机镜头前加装线偏振片,根据Stokes矢量建立偏振片最佳偏振角度求解模型,在使用最佳偏振角度的前提下采集定位特征点图像,提取图像坐标;建立线性位姿求解模型,计算被测物体位姿。实验结果表明,该方法能够有效减少图像中的高亮度区域,改善成像质量,提高线性位姿测量精度,在−60°~+60°的测量范围内,角度测量误差小于±0.16°,在0~20 mm的测量范围内,位移测量误差小于±0.05 mm。
位姿测量 最佳偏振角 线性算法 Stokes矢量 pose measurement optimal polarization angle linear algorithm Stokes vector 
红外与激光工程
2022, 51(3): 20210241
作者单位
摘要
天津大学 精密测试技术及仪器国家重点实验室,天津 300072
随着大尺寸工件和设备的制造加工以及装配的精度要求提高,对工件加工装配过程进行测量的测量系统精度要求也有所提高。多边法激光跟踪三维坐标测量系统只利用距离测量数据解算空间点坐标,能够避免激光跟踪仪角度测量带来的误差。文中提出了一种通过在跟踪仪测头挂载夹具进行球心拟合来获取跟踪仪测量原点的方式进行系统自标定,并辅以移站的方式,可使用两台激光跟踪仪构建四站多边法激光跟踪三维坐标测量系统。另外,文中还尝试了三站系统的构建。实验证明,四站系统将对标称长度1000.943 mm位于约20 m处的标准尺长度测量误差由最大110 μm减小至28 μm,三站系统将对标称长度969.045 mm位于约7.5 m处的标准尺长度的测量误差由最大67 μm减小至21 μm,相较于单台跟踪仪提高了精度,相较于传统多边系统降低了测站数量和成本,能够在工业现场实现高精度三维坐标测量。
多边法 激光跟踪仪 球心拟合自标定 坐标测量 multilateral laser tracker spherical center fitting-self-calibration coordinate measurement 
红外与激光工程
2020, 49(8): 20190438
作者单位
摘要
天津大学精密测试技术及仪器国家重点实验室, 天津 300072
调频重采样是一种绝对测距技术。 这种方法采用的光源波长随时间变化, 形成一束宽光谱激光。 激光在各时刻的波长通过辅助干涉装置进行测量, 并对其中频率间隔相同的部分进行重采样, 使调频测距系统具有较大的线性光谱带宽, 较高的分辨率及精度。 在实际测量过程中, 测量装置本身及待测物都容易受到振动的影响, 导致待测距离及辅助光纤长度发生变化, 引入测距误差。 针对这个问题, 分析了振动对重采样测量结果产生的误差: (1)待测物的移动引入一个多普勒频移分量; (2)辅助光纤的振动使重采样频率也发生变化。 为了弥补这两种误差, 提出了一种三光路结构的补偿方法, 在辅助光路中, 使用一种光路结构简单小巧, 且测量速度更快的全光纤马赫泽德干涉仪等效代替光谱仪, 实时的监测信号光的瞬时频率。 在测量光部分, 在测量光路中引入两个部分反射镜产生两路补偿光信号, 并通过FFT算法产生频谱。 频谱的三个峰值分别与三路信号相对应。 通过测量信号与其中一路补偿信号的峰值相减即可补偿多普勒误差, 通过两路补偿信号的频率差与相对距离的比值即可得出实际的辅助光纤长度。 实验证明, 传统的重采样测距方法精度为23.6 μm, 三光路测距方法的精度可达到11 μm, 可见这种方法能够对系统的振动误差进行有效补偿。
高频连续波测距 激光雷达 激光干涉测距 Frequency modulation continous wave ranging Laser radar Laser interferometry ranging 
光谱学与光谱分析
2020, 40(4): 1007
作者单位
摘要
State Key Laboratory of Precision Measuring Technology and Instruments,Tianjin University, Tianjin300072, China
在双光路调频连续波激光测距系统中,辅助光纤的长度标定精度直接影响了系统的测距精度。提出一种基于氰化氢气体池信号拼接的辅助光纤标定方法,通过提高辅助光纤标定精度进而提高系统测距精度。深入研究了基于氰化氢气体池标定方法的原理,为减小数据采集系统负担,利用信号拼接的方法进行改进。实验表明,与传统激光干涉仪的光纤标定方法相比,基于气体池拼接的标定方法具有更高的稳定性,同时,在3.8 m测量范围内,采用该标定方法的测距系统与干涉仪标准距离值误差不超过14 μm,测量标准差低于17 μm。
调频连续波激光测距 光纤标定 氰化氢气体吸收池 重采样 FMCW laser ranging optical fiber calibration H13C14N gas cells resampling 
红外与毫米波学报
2020, 39(3): 331
作者单位
摘要
天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
为了解决调频连续波(FMCW)激光器调制非线性导致的测量信号频谱展宽降低激光干涉测距精度的问题, 采用一种基于等光频细分重采样的调频干涉测距方法, 进行了理论分析和实验验证, 获得了双光路测距系统对不同位置目标信号等光频细分重采样后的波形数据,并进行了频谱分析。结果表明, 通过等光频细分重采样的方法, 使用细分后的时钟信号点对距离大于辅助干涉光路光程差的目标测量信号进行重采样, 消除了激光器的调制非线性的影响, 并且避免了采样点数不足引起信号失真的问题; 在4.3m测量范围内, 等光频细分重采样测距系统与激光干涉仪相比最大残余误差不超过±18.46μm, 最大测量标准差为23.39μm; 该方法使用的辅助干涉光路光程差很短, 受环境的影响较小, 可以获得稳定的时钟信号, 并且可以减少双光路FMCW测距系统的体积与成本。该研究为长距离、高精度调频连续波测量提供了实用参考。
测量与计量 非线性消除 重采样 调频连续波 激光测距 measurement and metrology nonlinear elimination resampling frequency modulated continuous wave laser ranging 
激光技术
2020, 44(1): 1
作者单位
摘要
1 中国地震局第一监测中心, 天津 300180
2 天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
为测量GNSS天线连接器同轴度误差,构建了连接器分段旋转数学模型,提出了一种水平转台和机器视觉结合的非接触式测量方法,搭建测量装置并进行了测量实验.分析连接器运动方式和同轴度误差测量方法,确定各轴线之间的偏移关系,建立同轴度误差数学模型和测量模型.搭建测量装置,相机安装在水平转台上方,光轴平行于水平转台轴线.旋转水平转台,使用相机捕捉转接螺杆端面圆心位置并拟合轨迹,完成测量装置同轴度误差自标定.将连接器安置在水平转台上,旋转水平转台,测量连接器顶部螺纹杆轴线相对水平转台轴线的偏移.旋转连接器的承载器,测量连接器顶部螺纹杆轴线相对承载器轴线的偏移.最终,综合各轴线的偏移关系得到连接器同轴度误差的最大值.实验结果表明,测量装置对GNSS天线连接器同轴度误差的测量标准差为9 μm,单次测量结果的扩展不确定度U=30 μm(k=2),满足GNSS天线连接器0.1 mm至1 mm量级的同轴度误差的测量需求,使用连接器同轴度误差修正GNSS超短基线测量结果,可以显著提升基线测量精度.
天线连接器 误差模型 轴线偏移 轨迹拟合 同轴度误差 机器视觉测量 GNSS GNSS Antenna connector Error model Axis deviation Orbit fitting Coaxiality error Machine vision measurement 
光子学报
2020, 49(2): 0215002
作者单位
摘要
天津大学精密测试技术及仪器国家重点实验室, 天津 300072
作为一种高精度测量工具, 飞秒激光具有优于传统激光技术的特性, 已被广泛应用于工业生产、 航空航天、 科学研究等领域。 扫频采样法在很大程度上改善了机械振动、 扫描速度过慢等问题, 对飞秒激光的绝对测距性能提升有着重要的意义。 基于扫频采样原理, 提出了一种利用飞秒激光的大尺寸距离测量方法, 并对该技术的测量原理、 干涉光谱和解调算法等方面进行了研究。 首先, 根据飞秒激光的锁模生成原理和压电陶瓷的压电效应, 介绍了飞秒激光器连续扫描重复频率的方法。 在此基础上, 结合传统的光学采样法原理, 解释了扫频采样法的测距原理, 推导并讨论了光纤延迟线的长度对扫描距离的影响。 然后, 搭建了基于扫频采样的飞秒激光测距系统, 在线性导轨上进行了远距离的测量实验, 同时设计了基于迈克尔逊干涉原理的He-Ne激光参考光路。 根据实验环境修正了空气群折射率, 分析了测量距离对光谱条纹峰值和宽度的影响, 测量了不同目标位置处的激光扫描距离。 在504 m的测量范围内, 扫描距离从056 mm增加到112 mm, 充分验证了光纤延迟线对提升大尺寸测距能力的重要性。 周期性的频率扫描可产生互相关条纹, 通过对测量光谱条纹进行希尔伯特变换处理, 解算出实时的频率变化量和采样倍乘系数, 从而获取被测的距离信息。 此外, 为了减小系统的时间延迟误差, 提高测量的准确性, 采用差分原理对算法进行了改进。 在希尔伯特算法基础上, 分别对频率和距离进行差分处理, 解算距离信息。 实验结果表明, 经过对比, 采用基于距离差分的改进算法处理数据, 性能结果较好。 算法改进后, 系统在50 m范围内的测量精度从11 μm提高到4 μm, 相对精度从22×10-9提高到8×10-8, 测距准确性明显提高。 通过分析重复性测量数据, 并与增量式激光干涉仪结果比对, 测量误差的标准差从10 μm提高到2 μm, 最大相对稳定性从2×10-9提高到4×10-8, 测距稳定性明显提高。 因此, 该方法有较为优秀的大尺寸测距能力, 具有同时实现高精度、 大尺寸、 快速绝对测距的潜力, 在未来的精密光谱测量领域有着很大的前景。
飞秒激光 光学采样 大尺寸测距 干涉光谱 Femtosecond laser Optical sampling Large-scale distance measurement Interference spectrum 
光谱学与光谱分析
2019, 39(9): 2708
作者单位
摘要
天津大学精密测试技术及仪器国家重点实验室, 天津 300072
对调频连续波激光测距技术进行改进,提出了触发重采样方法。在所提方法中,辅助信号先触发采集卡,然后对测量信号和辅助信号同时采样,再用采集到的辅助信号的极值点对测量信号进行重采样。实验结果表明:所提出的触发重采样方法的测量标准差最小可达到12 μm。
遥感 激光雷达 线性调频测距 激光干涉 非线性调频 
光学学报
2019, 39(4): 0428003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!