应用光学, 2019, 40 (2): 342, 网络出版: 2019-03-26   

薄膜光学锥形光栅的制备与光学特性分析

Fabrication and optical properties analyses of thin film optical tapered grating
作者单位
西安工业大学 光电学院 陕西省薄膜技术与光学检测重点实验室, 陕西 西安 710021
摘要
为了在光学薄膜中引入连续轮廓的微结构, 综合利用薄膜的干涉效应与微结构的折反射、衍射效应, 提出一种薄膜光学微结构的制备工艺。基于时域有限差分方法设计了具有可见光波段减反射特性的薄膜光学锥形光栅; 采用单点金刚石车削技术, 结合纳米压印与电感耦合等离子体刻蚀技术, 在SiNx薄膜中制备出高1.6 μm, 周期4.1 μm的锥形光栅; 在可见光波段, SiNx薄膜光学锥形光栅的平均反射率为5.7%, 反射率的实验检测结果与仿真计算结果达到很高的一致性; 当入射光角度在30°以内, 薄膜光学锥形光栅的减反特性表现出对光波入射角度的不敏感性。该制备工艺突破了单点金刚石车削技术的材料局限, 将连续轮廓的微结构的直接形成工艺拓展至介质薄膜当中, 实现了宽光谱、宽入射角度的减反射。
Abstract
In order to introduce a continuous contoured microstructure into the optical thin film, the refraction, diffraction of the microstructures and the interference of the thin film were comprehensively utilized,and the preparation process of the thin film optical microstructure was proposed. The thin film optical tapered grating with anti-reflection characteristics in visible light was designed based on the finite difference time domain method. A tapered grating having a height of 1.6 μm and a period of 4.1 μm was prepared in the SiNx film by single point diamond turning technology, combined with nanoimprint lithography and inductively coupled plasma etching, In the visible band, the SiNx thin film optical tapered grating had an average reflectance of 5.7%, and the experimental results of the reflectance were highly consistent with the simulation results; when the incident angle was within 30°, the anti-reflection characteristic of the thin-film optical tapered grating exhibited an insensitivity to the incident angle of the light waves. It is indicated that the preparation process breaks through the material limitations of the single point diamond turning technology, it can extend the direct formation process of the continuous contour microstructure into the dielectric thin film, and can achieve the anti-reflection of wide spectrum and wide angle.
参考文献

[1] GRUNWALD R. Thin film micro-optics[M]. Berlin: University of Berlin, 2007.

[2] GUO S, LIU R B, NIU C H, et al. Tin nanoparticles-enhanced optical transportation in branched CdS nanowire waveguides[J]. Advanced Optical Materials, 2018, 6(17): 1800305.

[3] BRUYNOOGHE S, HELGERT M, CHALLIER M, et al. Wideband antireflection coatings combining interference multilayers and subwavelength structures prepared by reactive ion etching[J]. SPIE, 2015, 9558: 955804-1-12.

[4] 钟可君, 伏燕军, 江光裕. 一种提高OLED基底出光效率的亚波长光栅设计[J]. 应用光学, 2018, 39(5): 701-706.

    ZHONG Kejun, FU Yanjun, JIANG Guangyu. Design of sub-wavelength grating for improving effciency of OLED substrate[J]. Journal of Applied Optics, 2018, 39(5): 701-706.

[5] 鱼卫星, 卢振武, 王鹏, 等. 锥形轮廓亚波长二维表面浮雕结构的矢量衍射特性[J]. 光子学报, 2001, 30(3): 331-335.

    YU Weixing, LU Zhenwu, WANG Peng, et al. Vector diffracted characteristic of tapered profile two-dimensional subwavelength surface-relief structure[J]. Acta Photonica Sinica, 2001, 30(3): 331-335.

[6] LEEM J W, SONG Y M, LEE Y T, et al. Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications[J]. Applied Physics B, 2010, 100(4): 891-896.

[7] LE D, LEE J M, KIM S J, et al. Burr analysis in microgrooving[J]. The International Journal of Advanced Manufacturing Technology, 2010, 50(5/6/7/8): 569-577.

[8] LUO X C, TONG Z. Nano-grooving by using multi-tip diamond tools[M]. Micro/Nano Technologies. Singapore: Springer Singapore, 2018: 1-41.

[9] JIANG W, LIU H Z, YIN L, et al. Enhanced photoelectric properties in dye-sensitized solar cells using TiO2 pyramid arrays[J]. The Journal of Physical Chemistry C, 2016, 120(18): 9678-9684.

[10] AMALATHAS A P, ALKAISI M. Efficient light trapping nanopyramid structures for solar cells patterned using UV nanoimprint lithography[J]. Materials Science in Semiconductor Processing, 2017, 57: 54-58.

[11] SONG Z, XU H, WEI X, et al. Experimental investigation of Ar inductively coupled plasma in a closed low-pressure chamber[J]. IEEE Transactions on Plasma Science, 2018, 99: 1-7.

[12] YANG L M, PAN C Y, LU F P, et al. Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method[J]. Optics & Laser Technology, 2015, 67: 72-77.

[13] ZHOU C L, ZHU J J, FOSS S E, et al. SiOyNx/SiNx stack anti-reflection coating with PID-resistance for crystalline silicon solar cells[J]. Energy Procedia, 2015, 77: 434-439.

[14] GE S B, LIU W G, ZHOU S, et al. Design and preparation of a micro-pyramid structured thin film for broadband infrared antireflection[J]. Coatings, 2018, 8(5): 192.

[15] 潘永强, 陈佳. 微结构窄带滤光片设计及制备工艺研究[J]. 应用光学, 2017, 38(1): 78-82.

    PAN Yongqiang, CHEN Jia. Design and fabrication of microstructure narrowband filter[J]. Journal of Applied Optics, 2017, 38(1): 78-82.

葛少博, 刘卫国, 周顺, 李世杰, 杨鹏飞. 薄膜光学锥形光栅的制备与光学特性分析[J]. 应用光学, 2019, 40(2): 342. GE Shaobo, LIU Weiguo, ZHOU Shun, LI Shijie, YANG Pengfei. Fabrication and optical properties analyses of thin film optical tapered grating[J]. Journal of Applied Optics, 2019, 40(2): 342.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!