激光与光电子学进展, 2018, 55 (10): 102803, 网络出版: 2018-10-14   

太湖沿岸水体高分一号影像的邻近效应校正 下载: 2358次

Correction of the Adjacency Effect for GF-1 Image in Coastal Waters of Taihu Lake
作者单位
1 浙江水利水电学院测绘与市政工程学院, 浙江 杭州 310018
2 浙江工商大学旅游与城乡规划学院, 浙江 杭州 310018
3 南京师范大学虚拟地理环境教育部重点实验室, 江苏 南京 210023
摘要
对于沿岸水体, 传感器接收到的水体辐射信号受到沿岸陆地高反射率的影响, 图像对比度降低, 邻近效应影响显著。有效剔除大气衰减和邻近效应, 准确获取水体表面反射率, 是水色遥感定量反演的重要前提。基于2016年4月29日太湖沿岸水体的实测光谱数据与同步过境的高分一号宽覆盖相机(GF-1/WFV)影像, 使用6S模型剔除大气衰减的影响, 并使用核函数表达大气点扩展函数, 进行邻近效应校正。实验结果表明, 邻近效应校正后的图像更清晰, 对比度增大, 水体细节信息更丰富。与6S校正结果相比, 3个同步实测样点的邻近效应校正结果的平均相对误差分别降低了10.8%, 5.24%, 10.39%, 邻近效应校正改进了水面遥感反射率的辐射探测精度。
Abstract
For coastal waters, the radiation signal received by a sensor is affected by the high reflectance of the terrestrial land, which can result in a reduced image contrast and significant adjacency effect. Eliminating atmospheric attenuation and the adjacency effect and obtaining accurate water surface reflectance are important prerequisites for quantitative water color remote sensing. Based on the in situ spectral data of the coastal waters of Taihu Lake on April 29, 2016 and a synchronous Gaofen-1 wide field of view (GF-1/WFV) image, the 6S model was used to eliminate atmospheric attenuation, and a nuclear function is used to express the atmospheric point spread function to correct the adjacency effect. The experimental results show that the image after correcting the adjacency effect is clearer with an increased contrast and more abundant information regarding the water body. Compared with the correction results of the 6S model, the average relative errors of the three in situ synchronous samples after correcting the adjacency effect are reduced by 10.8%, 5.24%, and 10.39%, respectively. Correcting the adjacency effect improves the accuracy of radiation detection of the remote sensing reflectance above water surface.
参考文献

[1] 汤兴. 高分辨率遥感图像的邻近效应分析及大气校正方法研究[D]. 北京:中国科学院大学, 2016.

    Tang X. Research on adjacency effect analysis and atmospheric correction method of high resolution remote sensing data[D]. Beijing: University of Chinese Academy of Sciences, 2016.

[2] Kirk J T O. Light and photosynthesis in aquatic ecosystems[M]. Cambridge: Cambridge University Press, 1994.

[3] Wang M, Antoine D, Deschamps P Y, et al. Atmospheric correction for remotely-sensed ocean-color products[M]. Dartmouth: International Ocean-Colour Coordinating Group, 2010: 15-58.

[4] Kaufman Y J. Effect of the Earth's atmosphere on contrast for zenith observation[J]. Journal of Geophysical Research: Oceans, 1979, 84(C6): 3165-3172.

[5] Kaufman Y J. Atmospheric effect on spatial resolution of surface imagery[J]. Applied Optics, 1984, 23(19): 3400-3408.

[6] 刘成玉, 陈春, 张树清, 等. ETM图像大气邻近效应校正[J]. 光谱学与光谱分析, 2010, 30(9): 2529-2532.

    Liu C Y, Chen C, Zhang S Q, et al. Atmospheric adjacency effect correction of ETM images[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2529-2532.

[7] Santer R, Schmechtig C. Adjacency effects on water surfaces: primary scattering approximation and sensitivity study[J]. Applied Optics, 2000, 39(3): 361-375.

[8] Bulgarelli B, Kiselev V, Zibordi G. Simulation and analysis of adjacency effects in coastal waters: a case study[J]. Applied Optics, 2014, 53(8): 1523-1545.

[9] Odermatt D, Kiselev V, Heege T, et al. Adjacency effect considerations and air/water constituent retrieval for Lake Constance[C]∥Conference on the 2nd MERIS/(A) ATSR User Workshop, September 22-26, 2008, Frascati, Italy. 2008(ESA): SP-666.

[10] 王中挺, 李小英, 李莘莘, 等. GF-1星WFV相机的快速大气校正[J]. 遥感学报, 2016, 20(3): 353-360.

    Wang Z T, Li X Y, Li S S, et al. Quickly atmospheric correction for GF-1 WFV cameras[J]. Journal of Remote Sensing, 2016, 20(3): 353-360.

[11] 孙林, 于会泳, 傅俏燕, 等. 地表反射率产品支持的GF-1 PMS气溶胶光学厚度反演及大气校正[J]. 遥感学报, 2016, 20(2): 216-228.

    Sun L, Yu H Y, Fu Q Y, et al. Aerosol optical depth retrieval and atmospheric correction application for GF-1 PMS supported by land surface reflectance data[J]. Journal of Remote Sensing, 2016, 20(2): 216-228.

[12] 侯旭洲. 高分一号卫星遥感影像大气校正与效果评价方法研究[D]. 北京:中国科学院大学, 2014.

    Hou X Z. Atmospheric correction and its evaluation of Gaofen-1 remote sensing image[D]. Beijing: University of Chinese Academy of Sciences, 2014.

[13] 刘佳, 王利民, 杨玲波, 等. 基于6S模型的GF-1卫星影像大气校正及效果[J]. 农业工程学报, 2015, 31(19): 159-168.

    Liu J, Wang L M, Yang L B, et al. GF-1 satellite image atmospheric correction based on 6S model and its effect[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 159-168.

[14] 汤兴, 易维宁, 杜丽丽, 等. 高分一号卫星多光谱遥感图像邻近效应校正研究[J]. 光学学报, 2016, 36(2): 0228003.

    Tang X, Yi W N, Du L L, et al. Adjacency effect correction study of GF-1 satellite multi-spectral remote sensing images[J]. Acta Optica Sinica, 2016, 36(2): 0228003.

[15] Lyapustin A I, Kaufman Y J. Role of adjacency effect in the remote sensing of aerosol[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D11): 11909-11916.

[16] 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ: 水面以上测量法[J]. 遥感学报, 2004, 8(1): 37-44.

    Tang J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis I: above-water method[J]. Journal of Remote Sensing, 2004, 8(1): 37-44.

[17] 徐希孺, 王平荣. 用蒙特卡罗方法计算大气点扩散函数[J]. 遥感学报, 1999, 3(4): 268-278.

    Xu X R, Wang P R. Computing atmospheric point spread function by Monte-Carlo method[J]. Journal of Remote Sensing, 1999, 3(4): 268-278.

[18] Liang S, Fang H, Chen M. Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2490-2498.

[19] 王倩, 陈雪, 马建文, 等. 基于SHDOM经验方程和基于同步实测光谱数据的遥感影像邻近效应校正算法对比研究[J]. 光学学报, 2010, 30(11): 3342-3348.

    Wang Q, Chen X, Ma J W, et al. A comparative study of two remote sensing image adjacency effect correction algorithms based on SHDOM empirical equation and synchronized measured spectral data[J]. Acta Optica Sinica, 2010, 30(11): 3342-3348.

[20] 王海东, 马晓珊, 杨震, 等. 人工神经网络计算大气点扩展函数[J]. 激光与光电子学进展, 2016, 53(10): 102801.

    Wang H D, Ma X S, Yang Z, et al. Computing the atmospheric point spread function by artificial neural networks[J]. Laser & Optoelectronics Progress, 2016, 53(10): 102801.

[21] 肖青, 柳钦火, 李小文, 等. 高分辨率机载遥感数据的交叉辐射影响及其校正[J]. 遥感学报, 2005, 9(6): 625-633.

    Xiao Q, Liu Q H, Li X W, et al. Analysis and correction of atmospheric cross radiation for high geometric resolution airborne remote sensing data[J]. Journal of Remote Sensing, 2005, 9(6): 625-633.

[22] Matthews M W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters[J]. International Journal of Remote Sensing, 2011, 32(21): 6855-6899.

[23] Kiselev V, Bulgarelli B, Heege T. Sensor independent adjacency correction algorithm for coastal and inland water systems [J]. Remote Sensing of Environment, 2015, 157: 85-95.

[24] 马晓珊, 郭晓勇, 孟新, 等. 光学遥感对地成像过程中的邻近效应模拟分析[J]. 红外与毫米波学报, 2015, 34(2): 250-256.

    Ma X S, Guo X Y, Meng X, et al. Simulation and analysis of the adjacency effect in earth-imaging process of the optical remote sensing[J]. Journal of Infrared and Millimeter Waves, 2015, 34(2): 250-256.

[25] Vermote E F, Tanre D, Deuze J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 675-686.

程春梅, 李渊, 韦玉春, 涂乾光. 太湖沿岸水体高分一号影像的邻近效应校正[J]. 激光与光电子学进展, 2018, 55(10): 102803. Cheng Chunmei, Li Yuan, Wei Yuchun, Tu Qianguang. Correction of the Adjacency Effect for GF-1 Image in Coastal Waters of Taihu Lake[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102803.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!